Neutrino Studies with Photon Probes

-Double Beta Decays and Majorana Neutrino Masses-

H. Ejiri

JASRI Spring-8, NS ICU and RCNP Osaka Univ.

Appeal 14, April 7, 2006

I. Neutrinos and photons in **n** mass studies by **bb**. **II. bb** Experiments, the present and future **III.** MOON* for **n** mass studies by scintillation photons **IV. Neutrino nuclear responses and MeV photons** V. Concluding remarks * Mo Observatory Of Neutrinos **Comments on JASRI** Thank Dr Yamashita, Dr Kawashim accelerator colleagues.

Neutrinos and Photons in **bb-n** studies

n's are key particles for new physics beyond SM

Fundamental questions

- Majorana nature **n** = Anti-**n**?
 - **Absolute Mass ?, Mixings (oscillation) & phases ?**

n's have no electric, no color charges, only weak charge.
 Invisible experimentally since visible =EM interaction.

n's are studied by converting

- **n** to e : charged lepton-electron via WEAK(10⁻¹/y)
- e to photons, which is visible through EM.(10²²/y)
- **n** mass by double electrons via double WEAK (10⁻²⁵/y)

Neutrino study in nuclear micro laboratories

- Nuclei, being made of nucleons in quantum states, are
- excellent micro-laboratories to study fundamental properties of particles **n**'s and weak interactions.
- **bb** decays in nuclei, where **n**-exchange between 2 n is enhanced by 10⁷, and BG single **b** is forbidden.
- Inverse **b** decays by astro-**n**'s to select astro-**n**'s.

🛛 Crucial: n nuclear responses 🔬

Neutrino studies by **bb** decays

H. Ejiri Invited Review **bb** and **n**. JSPS 74, 2101, Aug.05.

bb is the most sensitive and realistic way to study
1. Majorana nature of n, n = anti-n
2. Majorana n mass scale and spectrum in the range of 50-5 meV suggested by oscillation data.

bb and Majorana **n** masses

$\langle \mathbf{m_n} \rangle = \mathbf{S} \mathbf{k_i} \exp(\mathbf{i} \mathbf{f_i}) \mathbf{m_i}$ Using $\mathbf{k_i} \mathbf{dm_s}$, $\mathbf{dm_a}$ given by **n** oscillations

$$NH \quad < m_{\nu} >= c_2^2 c_3^2 m_1 + c_2^2 s_3^2 e^{i\phi_2} (\delta m_S^2 + m_1^2)^{1/2} + s_2^2 e^{i\phi_3} (\delta m_A^2 + m_1)^{1/2},$$

$$IH \quad \langle m_{\nu} \rangle = s_2^2 m_1 + c_2^2 c_3^2 e^{i\phi_2} (\delta m_A^2 - \delta m_S^2 + m_1^2)^{1/2} + c_2^2 s_3^2 e^{i\phi_3} (\delta m_A^2 + m_1)^{1/2}$$

where a and a are each and $\sin\theta$, with $\theta_1 \to \pi/4$, $\theta_2 \to 0$, $\theta_1 \to \pi/6$

where c_i and s_i are $\cos\theta_i$ and $\sin\theta_i$ with $\theta_1 \sim \pi/4, \theta_2 \sim 0, \theta_3 \sim \pi/0,$

Non zero T⁰ⁿ leads absolute mass scale in the 0.1-0.01 eV range, the mass spectrum, and $\mathbf{f}_i \cdot \sin^2 2\mathbf{q}_{13} < 0.15$.

Neutrino mass spectra

Majorana n masses in QD, IH. NH

Nuclear matrix elements within 20 % is indispensable for identify the mass spectrum and the Majorana phases.

Energy and angular correlations of Onbb rays H. Ejiri, Invited review paper JPSJ 74 05 2101

Fig. 4. Energy and angular correlations for the ¹⁰⁰Mo $0\nu\beta\beta$ proces caused by the mass and right-handed current terms of $\langle m \rangle$, $\langle \lambda \rangle$ and $\langle \eta \rangle$ Top: Calculated single- β spectra. Bottom: $\beta_1 - \beta_2$ angular correlation coefficients α defined by $W(\theta_{12}) = 1 + \alpha \cos \theta_{12}$.⁴⁾

II. Double beta decay experiments

Onbb status

Table VI. Limits on neutrino-less double β^- decays. $Q_{\beta\beta} : Q$ value for the $0^+ \to 0^+$ ground state transition. $G^{0\nu}$: kinematical factor (phase space volume)^{*a*} in units of 10^{-14} y⁻¹, $T_{1/2}^{0\nu}$: half-life limits in units of 10^{24} y and $\langle m_{\nu} \rangle$: limit on the effective ν mass in units of eV.

isotope	$Q_{\beta\beta}$ MeV	$G^{0\nu} \ 10^{-14} \ {\rm y}^{-1}$	$T^{0\nu}_{1/2} \ 10^{24}$	$\langle m_{\nu} \rangle \mathrm{eV}$	Comments
^{48}Ca	4.276	4.46	> 0.014	< 7.2-45	b
$^{76}\mathrm{Ge}$	2.039	0.44	$> 19(12^*)$	$\checkmark 0.35 (\approx 0.44^*)$	c(c')
$^{76}\mathrm{Ge}$	2.039	0.44	> 16	< 0.33-1.35	d
$^{82}\mathrm{Se}$	2.992	1.89	> 0.19	< 1.3 - 3.2	e
$^{100}\mathrm{Mo}$	3.034	3.17	> 0.35	< 0.7 - 1.2	f
$^{116}\mathrm{Cd}$	2.804	3.24	> 0.17	< 1.7	g
$^{128}\mathrm{Te}$	0.876	0.12	> 7.7	< 1.1 - 1.5	h
$^{130}\mathrm{Te}$	2.529	2.86	> 0.75	< 0.3 - 1.6	i
$^{136}\mathrm{Xe}$	2.467	3.03	> 0.44	< 1.8 - 5.2	j
$^{150}\mathrm{Nd}$	3.368	13.4	> 0.0012	< 3	k

a: $G^{0\nu} = ln2G^{(0\nu)}$, where $G^{(0\nu)}$ is for $(T^{0\nu}_{1/2})^{-1}$ in ref.²³⁾ b: ref.⁹⁷⁾ c: ref.⁸¹⁾ c': ref.³¹⁾ *: finite values, d: ref.³⁰⁾ e: ref.³²⁾ f: ref.³²⁾ g: ref.⁹⁹⁾ h: geochemical method ref.⁹⁰⁾ i: ref.¹⁰⁰⁾ j: ref.¹⁰¹⁾ k: ref.⁸⁵⁾

CUORITINO 1.8 10²⁴ y 90% CL ~ 0.2 – 1 eV

Perspectives of $< m_n > by bb$ $T^{0n} = G |M^{0n}|^2 |< m_n > |^2, \quad G = k(Z) Q_{bb}^5.$ $N^{0n} > [N_{BG}]^{1/2}$

- $\blacksquare \qquad \mathbf{m_n^{-1} \sim S t^{1/4} \quad Sensitivity \ S = S_n(nuclear) \ x \ S_d(detector)}$
- $S_n = M {}^{\mathbf{O}n} k(Z)^{1/2} Q_{bb}^{5/2}$
- $S_d = [N_{bb} / N_{BG}]^{1/4} N_{BG} \sim N(2nbb) + RI \text{ per ton of } N_{bb}$
- Present experiments : limited to 0.3 ~ 1 eV by the detector S_D.
 Next generation **bb** detectors with 20 ~ 30 meV
- Large phase space/Q value to get a large nuclear sensitivity
 Large Detector with N_{bb} ~ tons to get at least a few signals.
 Small BG and/or good resolution.

Future projects

Table VII. Isotopes and detectors to be used for future $\beta\beta$ experiments. A: isotope abundance ratio, $Q_{\beta\beta}$: Q value in units of MeV, and S_N : nuclear sensitivity⁴) in units of 10^{-24} y⁻¹ (eV)⁻²

Isotope	A~%	$Q_{\beta\beta}{\rm MeV}$	$S_N 10^{-24} y^{-1} (\mathrm{eV})^{-2}$	Experiment/collaboration
48 Ca	0.187	4.276	0.11	$CANDLES^{a}$
$^{76}\mathrm{Ge}$	7.8	2.039	0.22	$\operatorname{MAJORANA}^b\operatorname{GENIUS}^c\operatorname{GERDA}^d$
$^{82}\mathrm{Se}$	9.2	2.992	0.86	$Super-NEMO^e$
$^{100}\mathrm{Mo}$	9.6	3.034	2.02	$MOON^{f}$
$^{116}\mathrm{Cd}$	7.5	2.804	0.90	COBRA^g CAMEO^h
$^{130}\mathrm{Te}$	34.5	2.529	0.73	$CUORE^i$, $COBRA^g$
$^{136}\mathrm{Xe}$	8.9	2.467	0.13	$\mathrm{EXO}^{j}, \mathrm{XMASS}^{k}$
$^{150}\mathrm{Nd}$	5.6	3.368	11.3	$DCBA^l$ SNO++

Present and future **bb** experiments

Cosmological < 230 ~ 120 meV

Katrin Single **b** ~ 200 ~ 300 meV

Present Exps.

NEMO 3 Fréjus 4800 m.w.e.

Source: 10 kg of **bb** isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>:

1940 plastic scintillators coupled to low radioactivity PMTs

Energy spectrum of $E_{\beta} + E_{\beta}$ from ¹⁰⁰Mo by NEMO

DCBA Drift Chamber Beta Analyzer

III. MOON for bb in ¹⁰⁰Mo. Molybdenum Observatory Of Neutrinos

Neutrino studies in Mo nuclear micro laboratories MOON Molybdenum Observatory Of Neutrinos Osaka, UW, JINR, Tokushima, VNIIEF, LANL, FNAL, ICU, UNC, Prague,

A. Double beta decay spectroscopy with $m_n \sim 25$ meV. B. Low energy pp $\&^7$ Be solar n_e with s ~ 10 % with 1 y

- 1. large phase space for bb-n's
 Large energy most RI.
- 2. Large response for solar n's.
- 3.Larg sensitivities for bb and
- solar-n by the two b-rays
- **to select. n**-signals.

- 4. Based on the ELEGANT
- (ELEctron GAmma rayNeutrino Telescope)
- http://ewi.npl.washington.edu

Transition rates, Q values, phase volumes Ground excited 0+ states in ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, and ¹³⁶Xe QRPA matrix elements by Simkovic et al 04

MOON detector concept

- **A** Supermodule of Mo films and fiber/plate scintillators*.
- **1. Position read-out by fibers with 4 mm 0.4 mm**
- 2. Energy read-out by plate scintillators with
 - **E** resolution $s \sim 2.5$ % including the Mo film (20 mg / cm²).
- **3.** Enriched ¹⁰⁰Mo 0.5~ 1 ton by centrifugal separation of MoF₆ gas

MOON Plastic fiber-Mo Ensemble

Mo 0.02g/cm²

Resolution loss is appreciable. One X plane with 0.4 mm with effective 0.09 MeV loss. $s(Q) = s_P(Q)(1+k)$, where $k = (1/2) [(s_f/s_p)^2 - 1] [0.09/1.5]$, where s_f/s_p is the ratio of the plate fiber resolutions at 1 MeV. It is proportional to the the photon collection efficiency ratio of 70%/14% = 5. Thus fiber makes the resolution worse by k=12 %.

Position sensitive detector

One module **bb** source $1m-1m \ 20 \ mg/cm^2 = 0.2 \ kg$ PL+2DF $1.2 \ m - 1.2 \ m \ 4 \ cm$

One unit 150 modules, 30 kg, 1.2m – 1.2m – 6 m

Medium size PL with 0.53 m 0.53m 0.01 m.

Medium PL (0.53 m 0.53 m 0.01 m) with 32 Hamamatsu 60 mm sq. R6236-01 PM

N=10 K / MeV, T = 65 %, QE=30 %. s ~ 3% (FWHM 7%) @ 3MeV with s ~1.35 % stat., ~2.7% non-stat.

Left/right photon yield ratio gives position. 2.5 % / 20 cm can be corrected with of 2 cm

MOON 1 Proto type MOON in operation since April 2005 Plate sintillator ensemble inside the ELEGANT V Pb-Cu NaI shield

• 6-layers of PL $53 \times 53 \times 1$ cm³ Mo-Foil 160g @20mg/cm² × 2

Energy Resolution

2-PL Energy sum spectrum

Test run 0 count per 0.5 kg keV year

Oto Cosmo Observatory

Unused 5 km tunnel 1400 m we

Cosmic m 4 10⁻³ /m²/s Neutron 4 10⁻¹/m²/s Rn 10 Bq/m³

dark matter

bb experiment mass sensitivity $m_n = 17 [S^{0n}]^{-1/2} [B^{2n}]^{1/4} [s/3\%]^{1.5} [e/0.3]^{-1/2} [n_b]^{-1/4}$

2s CL with 5 t y S⁰ⁿ in 10⁻²⁴, B²ⁿ /t y, s%, n_b/t

sotope	Q	G	[S⁰n] ^{1/2}	[B²ⁿ] ^{1/4}	m <mark>"(</mark> n	neV)
⁸² Se	2.992	1.9.	0.79	1.3	28	17*
¹⁰⁰ Mo	3.034	3.2	1.1	2.45	38	23*
¹¹⁶ Cd	2.804	3.2	0.68	1.7	42	25*
¹⁵⁰ Nd	3.368	13.4	2.12	2.53	20(41)	12*(25)

- 1. IH mass of 30-40 meV and 20-25 meV below IH are achieved by s=3~2.1*% (7~5* %) resolutions.
- 2. Se82 is good because of small B²ⁿ and large Q if M⁰ⁿ is around 3.
- 3. Mo100 is good because of large G and S⁰ⁿ if M⁰ⁿ is around 3.
- 4. Nd150 is good because of the very large G and Q. Natural Nd can be used if M⁰ⁿ is OK.
- 5. Selection should be made by semi-experimental and theoretical M⁰ⁿ

IV. Neutrino nuclear responses by photon and neutrino probes

$T^{0n} = G^{0n} |M^{0n}|^2 |<m>|^2$

M⁰ⁿ nuclear matrix element: linear to **n** mass Nuclear theory calculations are sensitive to nuclear structures, uncertainty of a factor 2. Experimental data relevant to M⁰ⁿ.

B:Rodin-03 QRPA, C:Rodin-03 RQRPA, D:Simkovis01 QRPA E:Suhonen02 QRPA F:Faessler98 RQRPA

III. Nuclear proves for **n** response studies

 $Isospin < tY_L > and$ spin isospin $< tsY_L >_J$

0nbb
 L=0,1,2,3,4,5,
 E < 50 MeV

Weak, EM, and hadron probes forspin isospin responses for **n** Nuclear Responses for $0 \nu \beta \beta$

 $H(r_1, r_2, \tau_1, \tau_2, \sigma_1, \sigma_2) \sim f(r_1, r_2) \tau_1 \tau_2 \sigma_1 \sigma_2 \dots f(r_1, r_2) = 1/|r_1 - r_2|$

Separable Form for Nucleon $r_n < r_i$, $r_j < Nuclear R_N$ $f(r_1, r_2) \sim \sum_{r} f_{\ell} h_{\ell}(r_1) h_{\ell}(r_2)$ Ejiri, Belyaev $M^{0\nu} \sim \sum_{r} f_{\ell} < 0_f |T_{\ell}^+| i > \langle i | T_{\ell}^+| 0_i \rangle \quad T_{\ell} = h_{\ell}(\gamma) \tau \sigma$ $M^{0\nu} \sim \sum_{r} M_{\ell}^+(SP)M_{\ell}^-(SP) + (M_{\ell}^+(GR) M_{\ell}^-(GR) \rightarrow \varepsilon)$ Studied by τ^- and τ^+ Charge Exchange Reactions

q=04.GeV/C

1=0-6

RCNP Osaka Univ.

Charge Exchange Spin-flip Reactions

M^b from IAS g

IAS-GR interference gives M^b and sign

H. Ejiri PRL 21 '68, H. Ejiri PR 38 '78

$$g_{\nu} \boldsymbol{m}_{1\mu}^{\beta} = g_{\nu} \sum_{\lambda\nu} a_{\nu}^{+} \langle \nu | \boldsymbol{r} Y_{1\mu} | \lambda \rangle b_{\lambda}.$$

$$|g_{\nu} M^{\beta}| = \sqrt{2T_{0}} |eM_{1A}^{\nu}| \frac{g_{\nu}}{e}$$

$$g_{\nu} i\xi \boldsymbol{0}^{\beta} = -g_{\nu} i\xi \boldsymbol{m}^{\beta} (\Lambda - 1.2\Lambda_{1} - 1),$$
where $\langle \boldsymbol{m}^{\beta} \rangle = \langle \boldsymbol{r} \rangle, \Lambda = -i \langle \boldsymbol{\alpha} \rangle / \xi \langle \boldsymbol{r} \rangle$ and $\Lambda_{1} = i \langle \boldsymbol{\sigma} \times \boldsymbol{r} \rangle / \langle \boldsymbol{r} \rangle.$

GeM Photons : GeV-MeV Laser Electron photons

- **GeM LEPS** Spring-8 are unique probes
- Real photons in a wide energy range of multi GeV MeV
- **Energy** spectra with peak at the max energy.
- Polarizations ~ 100 % for E1-M1 vector axialvector

HIGS MeV photons

HIγS (High Intensity γ-ray Source)

Intra-cavity Compton Backscattering of FEL photons by electrons circulating in the 1.2GeV Duke Storage Ring

NewSUBARU

Laser-backscattered γ source@ NewSUBARU

Neutrino Weak probes

Low energy Neutrinos Stopped p^+ SNS/ORLaND $p + Hg \rightarrow n p^+$ $p^+ \rightarrow mi + n_m \rightarrow e^+ + n_e + anti-n_m$

Intense (~ 10^{15} /sec) **n**'s from 1 MW p, time structures and **n** spectra are used to study astro nuclear with large detectors(10 tons) for **s** ~ 10^{-41-42} cm²

So	ource	E GeV	/ Np	Nn
SI	NS	1	6 10 ¹⁵	7 1014
J -	PARC	3	1.2 10 ¹⁵	3 10 ¹⁴

Concluding remarks

- **1. Onbb**_X decays are realistic probes for the Majorana nature of **n** and absolute **n** masses in QD and IH, and in NH in future.
- 2. Calorimetric exps of Cuore, Exo, Majorana/GERDA and others, spectroscopic exps of MOON/Super-NEMO and others are promising to search for the QD and IH masses of 100-25 meV.
- **3 n** nuclear responses relevant to **Cnbb** are studied experimentally at RCNP by hadrons at HIGS and LEPS Spring-8/SUBARU by **photo-reactions through IAS and n-probes in future as well.**
- 4. MOON as Majorana/Mo Observatory Of Neutrinos with multilayer PL modules is realistic by novel photon detection for DBD spectroscopic experiment with the IH 25 meV mass sensitivity.
- 5. Welcome to IOMN (International Observatory of Majorana Neutrinos) as discussed in Osaka Feb. 2006 and NDM06 at Paris, http://events.lal.in2p3.fr/conferences/NDM06/

INTERNATIONAL STATEMENT ON NEUTRINOLESS DOUBLE-BETA DECAY

Avignone F, Barabash A, Ejiri H, Elliott S, Fiorini E,

Haxton W, Gratta G, Jullian S, Kochetov O, Minakata H,

Lalanne D, Morales A, Morales J, Petcov S, Suhonen J.

- Fundamental n properties studied by DBD: (1)Majorana nature & DL ¹0, the n mass spectrum & mass scale, possibly CP. DBD is realistic for studying these fundamental n properties.
- 2. 2. Next-generation DBD exps with <m> ~ 25 meV discover nonzero effective **n** mass if **n**'s are Majorana and the QD or IH.
- **3.** Form an international DBD network in order to endorse a coordinated approach to executing next-generation DBD probes

http://www.rcnp.osaka-u.ac.jp/~ejiri/DBD-Lett

Reference nresponses H.Ejiri, Phys. Rep. 338 (2000) 265. H. Ejiri Nucl. Instr. Methods, 503 (2003) 276 H. Ejiri Nucl. Instr. Methods, 503 (2003) 276

Review bb II.Ejiri, JPS (2005) 2104 Invited Review http://jpsj.ipap.jp/liak?JPSJ/74/2101

ELEGANT bb H. Ejiri, et al., Phys. Rev. 65 (2001) 065501

MOON bb solar and super nova n H.Ejiri, el al., Phys, Rev. Lett.,85 (2000) 2917 H.Ejiri, J.Engel, N.Kudomi, PL B530 (2002) 27 H.Ejiri, Czech.J.Phys.54: B317-B325-2004

Symposium http://www.spring8.or.jp/ext/en/appeal/nnr05

MOON collaboration

- P.J.Doe, R.G.H.Robertson*, D.E.Vilches, J.F.Wilkerson, D. I. Will. CENPA, Univ. Washington.
- H.Ejiri*, R. Hazama, K.Ichihara, Y.Ikegami, H. Ishii, T.Itahashi N.Kudomi, K.Matsuoka, H. Nakamura, M.Nomachi+, T. Ogama, T. Shima, Y.Sugaya, RCNP, and Physics OULNS, Osaka Univ.
- S.R.Elliott, LANL
- J.Engel. Phys.Astronomy, Univ. North Carolina.
- M.Finger, and K. Kuroda, Phys. Charles Univ. Prague
- K.Fushimi, K. Ichihara, GAS, Tokushima Univ. Tokushima
- M. Greenfield, ICU, Tokyo.
- A.Gorin, I.Manouilov, A.Rjazantsev. High Energy Physics, Protvino. A. Para FNAL
- A. Sissakian, V. Kekelidze, V. Voronon, G. Shirkov A. Titov, JINR
- V. Vatulin, V. Kutsalo, VNIIEF
- S. Yoshida, Tohoku Univ. Sendai
- * Contact persons.

Thank you for your attention.

Welcome to the **bb n** network to give rise to the DBD **n** experiment

Comments on JASRI from international science views.

JASRI. as one of the top research lab, with excellent scientists, technicians, & facilities, are supposed to contribute to the progress of science and technology in the world.

Crucial are followings

- I. Be active in original research works.
- 2. Attract and support users through their scientific and technical
 levels, which are motivated and kept via their research works.
- **3.** Collaborate with outside researchers.
- 4. Open to and responsible for science & technology communities as well as public i.e. tax payers.
- 5. Promote science and technology addressed for future progress.
- 6. Critical and constructive comments on projects around.
- 7. TOP DOWN: Scientists and technicians, being at
 - TOP, should do as they believe for science and technology. Administrative officials and bureaucrats, being at BOTTOM, support them.

Scientific and technical activities should be open at the web.site, and reviewed internationally.

Proposal of an APPEAL Lab. in the west pacific

Astro-particle physics with photons and neutrinos.
 Electron, photon, and neutrino detectors.

Laser technologies for MeV-GV LEPS.
 New electron photon accelerator complex.
 Related science and technology

Till Silve

Open to all scientists and technicians.

Workshop for APPEAL lab. to discuss objectives, groupmembers, budget and related problems. Let's start up now by calling for volunteers.