ϕ-meson photoproduction
New results from LEPS/SPring-8

APPEAL Seminar
September 8th, 2004

Tsutomu Mibe
Ohio university
for the LEPS collaboration
Ohio University and Jefferson lab.
Outline

- Physics motivation
- Experiment at LEPS/Spring-8
- Data analysis
- Results and discussions
- Summary
Vector Meson Photoproduction

\[\gamma p \rightarrow \pi, \eta, \sigma, \rho, \omega, \phi, \ldots \]

\[\gamma p \rightarrow uud \]

\[\gamma p \rightarrow \rho, \omega, \phi (\sim ss) \]

\[\gamma p \rightarrow \pi, \eta, \sigma \ldots \]
Glueball hunt by ϕ meson photoproduction

Pomeron \leftrightarrow Glueball ($J^{P} = 2^{+}$)
Daughter Pomeron \leftrightarrow Glueball ($J^{P} = 0^{+}$) ??

\[\frac{d\sigma}{dt}(\gamma p \rightarrow \phi p)(t = 0) = C \left(\frac{p_{\phi}}{p_{\gamma}} \right)^{2} \left(\frac{s - u}{2s_{0}} \right)^{0.16} + a \left(\frac{s - u}{2s_{0}} \right)^{\delta} \]
Ordinary meson exchange

\[\gamma p \rightarrow \rho p \]
\[\gamma p \rightarrow \phi p \]

Data from: LAMP2('83), DESY('76), SLAC('73), CERN('82), FNAL('79,'82), ZEUS('95,'96)
Polarization observables with linearly polarized photon

Photon Polarization

Decay angular distribution of ϕ meson

Relative contributions from natural, unnatural parity exchanges
Decay angular distribution of ϕ meson

ϕ meson rest frame (Gottfried-Jackson(GJ) frame)
Available data

SLAC
linear pol., $E_\gamma = 2.8, 4.8$ GeV
(J. Ballam et al. PLD 7 (1972)3150)
53 events in $E_\gamma = 2.8, 4.8$ GeV

Bonn
Unpol, $E_\gamma = 2.0$ GeV (NP B70(1974)257)

CLAS @J-lab
Unpol, linear pol. data at $E_\gamma = 1.6-2.5$ GeV

SAPHIR @ELSA/Bonn
Unpol, $E_\gamma = 1.6-2.6$ GeV (EPJ A17(2003)269)

New measurements near threshold at
LEPS @SPring-8
linear pol., $E_\gamma = 1.6-2.4$ GeV
Super Photon ring-8 GeV SPring-8

- Third-generation synchrotron radiation facility
- Circumference: 1436 m
- 8 GeV
- 100 mA
- 62 beamlines
Academia Sinica, Taiwan

Chiba University, Japan
H. Kawai, T. Ooba, Y. Shiino

International Institute for Advanced Studies
H. Ejiri

JAERI, Japan
Y. Asano, N. Muramatsu, A. I. Titov, R.G.T. Zegers

JASRI, Japan
S. Date, N. Kumagai, Y. Ohashi, H. Ookuma,
H. Toyokawa, T. Yorita

Konan University, Japan
H. Akimune

Kyoto University, Japan
K. Imai, T. Ishikawa, M. Miyabe, M. Niiyama, M. Yosoi

Nagoya University, Japan
Y. Miyachi, A. Wakai

University of Minnesota
P. Shagin
The LEPS facility

Laser Electron Photon at SPring-8

8 GeV → Laser

Laser → 3.5 eV

Compton Scattering

8 GeV Electron

Interaction Region

Laser Hutch

Experimental Hutch

SPring-8:
8 GeV electron storage ring
100 mA

BL33LEP

Detector
Linearly polarized photon

GeV photon
Intensity (typ.) 10^6/sec
Linear polarization 95% at 2.4 GeV
The tagging counter
Summary of data taking

• Trigger condition: TAG*STA*AC*TOF
• Run period
 2000, Dec. – 2001, June (50mm-long LH2 target)
 2002, May – 2003, Apr (150mm-long LH2 target)
 2002, Oct. – 2003, June (150mm-long LD2 target)

• The first data set with 50mm-long LH2 target
 – Total number of trigger
 1.83*10^8 trigger (48% Horizontal, 52% Vertical pol.)
 – Number of events with charged tracks
 4.37*10^7 events
Charged particle identification

Reconstructed mass

K/π separation (positive charge)

σ(mass) = 30 MeV(typ.) for 1 GeV/c Kaon
Charged particle identification

\[\gamma \rightarrow \phi \rightarrow \pi^0 \pi^0 \pi^0 \]

\[
\begin{array}{c}
\gamma \\
\phi \\
\pi^0 \\
\pi^0 \\
\pi^0 \\
\end{array}
\]

\[
\begin{array}{c}
p \\
p^+ \\
p^+ \\
p^+ \\
\end{array}
\]
Missing mass distribution

\[
\text{Missing mass (}\gamma, K^+K^-) \text{ (GeV)} \quad \text{events}
\]

\[
\text{Missing mass (}\gamma, K^-p) \text{ (GeV)} \quad \text{events}
\]

\[
\text{Missing mass (}\gamma, K^+p) \text{ (GeV)} \quad \text{events}
\]
KK invariant mass cut
Background subtraction

\[\alpha = \frac{S_A^{MC}}{A^{MC}} \]

\[\beta = \frac{S_B^{MC}}{B^{MC}} \]
Acceptance

\[t + |t|_{\text{min}} \, \text{GeV}^2 \]
Consistency between KK and Kp modes

![Graph showing consistency between KK and Kp modes]
HZ and VT consistency
Results
differential cross sections

\[\frac{d\sigma}{dt} (\text{\(\mu\)b/GeV}^2) \]

\[2.273 < E_\gamma < 2.373 \]
\[2.173 < E_\gamma < 2.273 \]
\[2.073 < E_\gamma < 2.173 \]
\[1.973 < E_\gamma < 2.073 \]
\[1.873 < E_\gamma < 1.973 \]
\[1.773 < E_\gamma < 1.873 \]
\[1.673 < E_\gamma < 1.773 \]
\[1.573 < E_\gamma < 1.673 \]
Differential cross sections

\[\frac{d\sigma}{dt} \text{(µb/GeV²)} \]

\[t \sim \text{(GeV}² \text{)} \]

\[0.03 \quad 0.04 \quad 0.05 \quad 0.06 \quad 0.07 \quad 0.08 \quad 0.09 \quad 0.1 \]

\[0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1 \]

\[-1 \quad -0.9 \quad -0.8 \quad -0.7 \quad -0.6 \quad -0.5 \quad -0.4 \quad -0.3 \quad -0.2 \quad -0.1 \quad 0 \]

\[4^{1/2} \times 3 \]

\[+ \text{BSUI FUBM&1+} \]

\[\text{GJCJO1SPDFFEJOHTPGUIF*OUFSOBUJPOBM4ZNQPTJVNl&.*z} \]

\[0 \text{TBLB} \]
Differential cross section at $t = -|t|_{\text{min}}$

$$d\sigma/dt(t = -|t|_{\text{min}}) \ (\mu b/GeV^2)$$

E$_\gamma$ (GeV) vs. E_{γ} (GeV)

- SLAC(1973)
- BONN(1974)
- DESY(1978)
- DARESBURY(1982)
- SAPHIR(2003)
- LEPS(2004)
Decay angular distribution
Summary of LEPS measurement

- **Differential cross section at t=\(-|t|\)min**
 - Peaking structure around \(E_\gamma=2.0\) GeV
 - Prediction from Regge theory:
 - contribution from Pomeron increases with energy.
 - Meson and/or glueball exchange could be candidates to make the bump.

- **Decay angular distribution**
 - Dominant contribution from helicity conserving amplitude.
 - Natural parity exchange (N) > Unnatural parity exchange (UN).
 - No energy dependence in polarization observables. Ratio \((N/UN)\) is energy independent.

- The bump can not be explained by pseudo scalar exchange only.
- Possible presence of additional natural parity exchange.
Open questions

• **What is origin of the peaking structure?**
 – Natural parity exchange
 – Signature of 0^+ glueball?
 – A fit by simple model failed.

\[
\frac{d\sigma}{dt}(\gamma p \rightarrow \phi p)(t = 0) = C \left(\frac{p_\phi}{p_\gamma} \right)^2 \left(\frac{s - u}{2s_0} \right)^{0.16} + a \left(\frac{s - u}{2s_0} \right)^\delta
\]

 – Need for further theoretical studies.

• **Isospin symmetry?**
 – Glueball should be “flavor blind”
 – CLAS Deuteron data (g2, g10)

• **Measurements at $E_\gamma=2.4-3$ GeV**
 – near future plan at LEPS
 – Ongoing analysis for large $|t|$ at CLAS (g1)
Summary

• New LEPS results for differential cross section of $\gamma p \rightarrow \phi p$ reaction and decay angular distribution near threshold.

• Non-monotonic rise of differential cross section at $t=-|t|_{\text{min}}$ with energy

• Dominant contribution from natural parity exchange, no energy dependence near the bump.

• A possible presence of additional natural parity exchange.
Acknowledgements