視射角入射X線回折による有機ナノエレクトロニクス材料の 界面構造評価

古賀智之^{*}, 森田正道^{*}, 矢可部公彦^b, 酒井 敦史^b, 田中敬二^b, 佐々木園^b, 坂田修身^c, 高原 淳^{*}

*九州大学・先導物質化学研究所, ^b九州大学大学院・工学研究院, ^c高輝度光科学研究センター

<u>緒言</u>:近年、フレキシブルディスプレイや大 面積ディスプレイを実現するために、有機半 導体薄膜を有機 FET に応用する試みが活発化 している。有機半導体の一つであるポリ(3-ヘキシルチオフェン)[P3HT]は溶剤可溶のた め低コストな溶液プロセスで均一薄膜の作製 が可能である。

本研究では表面自由エネルギーを精密に制 御した Si ウエハ上に P3HT 薄膜を形成し、二 次元結晶構造、分子配向などの表面ナノ構造 を、対称反射法による X 線回折と、放射光を 利用した視斜角入射 X 線回折(GIXD)により評 価し、高性能電子デバイス構築のための基礎 的な知見を得ることを目的とする。

実験: P3HT (HT-HT 結合 99%以上、Mw87,000) は Aldrich から購入したものを使用した。表 面自由エネルギー γ_{SV}の異なる基板を次の方 法で調製した。表面処理剤としてパーフルオ ロヘキシルエチルトリメトキシシラン(Rf)、 パーフルオロポリエーテルトリメトキシシラ ン(PFPE)、オクタデシルトリメトキシシラン (Rh)、フェニルトリメトキシシラン(Ph)、金 (Au)を用い、Rf、Rh は化学気相吸着法、PFPE、 Ph は化学液相吸着法、金[膜厚 20nm, Au (111)] はスパッタリング法に基づき、それぞれをシ ラノール基(SiOH)を形成した自然酸化 Si ウ エハに表面処理した。水とヨウ化メチレンの 接触角を Owens の式³に代入することにより 算出した基板の γ_{sv} は、SiOH(76mJ/m²) > Au 処理(41mJ/m²) > Ph 処理(36mJ/m²) > Rh 処理(30mJ/m²) > PFPE 処理(12mJ/m²) = Rf 処理(12mJ/m²)であった。これらのγ_{sv}が異な る基板上にスピンコート法により P3HT を製 膜した。膜厚は約100nmであった。P3HT薄膜 の結晶構造を、対称反射法とGIXDにより評価 した。対称反射法は基板を保持するために特 別に設計したホルダーを用いて、リガク製 RINT2500により 2 θ / θ を測定した。薄膜測定 時に観測される Si(111)[2 θ =28°]と Au(111)[2 θ =38°]の強い回折ピークは、基板 の回折プロファイルを差し引くバックグラン ド補正により消去した。In-plane(面内)GIXD は大型放射光施設 SPring-8の BL13XU ビーム ラインを用いて、全反射臨界角以下の入射角 α_i=0.1°で面内方向の回折を測定した。対称 反射法は薄膜バルクの膜表面に平行な格子面 を、そして面内 GIXD は薄膜表面の膜表面に垂 直な格子面を測定することが可能である。両 者は入射 X 線波長が異なるので、回折強度プ ロファイルは、散乱ベクトル $q=4\pi \sin\theta$ / *λ* (*θ*:ブラッグ角、*λ*: 入射 X 線波長) に対してプロットした。製膜後の熱処理(473K, 30min)の効果についても検討した。

結果および考察: 図1は、種々の γ sv を有 する基板上に製膜した P3HT 薄膜の面内 G4XD プロファイルである。P3HT フィルムの X 線回 折プロファイルは、側鎖のラメラ構造に由来 する (100)面[q = 3.9 nm⁻¹ (面間隔: d = 1.6 nm)]とチオフェン環の π-π stacking に由来 する (010) 面 [$q = 16.5 \text{ nm}^{-1}$ (d = 0.38 nm)] の二つの回折ピークが存在することが知られ ている^{2,4}。面内 GIXD プロファイルには、ラメ ラ構造に加えて π-π stacking のピークが現 れた。これは表面近傍で側鎖ラメラの配列が 乱れていることを示しているが、基板の種類 により強度比が若干変化することから、表面 結晶構造が基板の表面自由エネルギーの影響 を受けていることを示唆している。いずれの 基板においても熱処理により、回折ピークは シャープになり、高次の回折が現れた。また、 アモルファスに由来する散乱が減少した。 今後の課題: 今回 2003A の課題により、 BL13XUにおける GIXD 測定は、測定の精度 及び迅速さから、有機ナノエレクトロニクス 膜の凝集構造解析に非常に有用であることが 明らかになった。今回の測定結果を薄膜の基 板の表面処理にフィードバックし、分子構造 と単分子膜の分子鎖凝集状態との関係を明ら かにしたい。更に、有機シランタン分子膜表 面に可溶性ペンタセンの有機導電性薄膜の製 膜を行い、単分子膜の凝集状態・表面自由エ ネルギーが導電性高分子薄膜の結晶性、及び 結晶構造に及ぼす影響を明らかにするため、 引き続き GIXD 測定を計画したい。

参考文献

 K. Kojio, K. Omote, A. Takahara, T. Kajiyama, Langmuir, 16 (2000), 3932.
D. K. Owens, R. C. Wendt, J. Applied Polym. *Sci.* **13**, 1741 (1969).

3)R. D. McCullough, S. Tristram-Nagle, S. P. Williams, R. D. Lowe, M. Jayaraman, *J. Am. Chem. Soc.* **115**, 4910 (1993).

発表論文

T. Koga, M. Morita, H. Ishida, H. Yakabe, S. Sasaki, O. Sakata, A. Takahara, Analysis of Aggregation State of Polymer Thin Films Based on Grazing Incidence X-ray Diffraction, *Trans. Materials Research Society, Japan*, 28, in press.

図 1 種々の γ_{sv}を有する基板上に製膜 した P3HT 薄膜の面内 GIXD プロファイル