基礎講座4 ビームライン

JASRI ビームライン・技術部門 後藤俊治

1. はじめに

ビームラインは,挿入光源や偏向電磁石から放射されるシンクロトロン放射光に対して,フォトン エネルギー,エネルギー幅,空間および角度的ビーム広がりなどの選択をして,ユーザの望む放射光を 実験ステーションに導くためのものである.分光器やミラーなどの光学系の基本性能,放射光による 熱負荷・素子冷却,所定の真空度の維持,放射線遮蔽,対加速器や対ユーザインターフェイスなどの要 素について複合的に考慮して構成された機器の集合体である.

本講義では、SPring-8 において大半を占める X 線ビームラインを中心として SPring-8 のビームライン がどのように構成されているのかについて概説する.また、X 線ビームラインの主要光学系である結晶 分光器および全反射ミラーの基本原理について説明する.

2. SPring-8 におけるビームラインの全体的な配置、ビームライン機器構成など

2-1. 全体配置

図1にビームラインの構成例として BL01B1 の全体を, 蓄積リング, 収納部, 実験ホールとの位置関係も合わせて示した. 図示した範囲は, 蓄積リング, 実験ホール全周のうち約 1/20 分に相当する. 目的によって規模, 構成は異なるものの, このようなビームラインが実験ホールー周にわたって整備されている. 表 1,2 に現在稼動中, 建設中, および今後建設が可能なビームラインの一覧を示した.

電子蓄積リングはコンクリートでできた収納部内に設置されている. 収納部は蓄積リングにおいて 発生する放射線 (高エネルギーの制動放射ガンマ線,中性子,放射光) が実験ホール側に漏れることを 防ぐためにある. 蓄積リングの偏向電磁石や挿入光源から放射される放射光は,収納部に開けられた 取り出し口から実験ホールに取り出される. SPring-8 には全体で 61 本のビームライン取り出し口があ るが,隣同士は 4° もしくは 8° の角度で振り分けられている.

SPring-8 におけるビームラインは機能と場所の観点から大きく二つに区分できる. 収納部内にある ものがフロントエンドであり,実験ホールにあるものが光学系・輸送チャンネルである. ビームライン の末端にあるものが実験ステーションである. 通常,光学系・輸送チャンネルは光学ハッチ内に,実験 ステーションは実験ハッチ内に設置される.

図 1. ビームライン全体配置の例 (BL01B1).

SPring-8 のビームラインの長さは、光学系の条件などによって決められるばかりではなく、収納部、 実験ホール、外壁など蓄積リング棟の建家の構造と隣接ビームラインとのエリアの取り合いによって だいたいのレイアウトが制限される。光源点~蓄積リングの真空チェンバ出口(加速器の範囲)で10 ~20m程度、フロントエンドの領域はやはり10~20m程度で、これらを合わせて光源点から収納部出 口までが25~35m程度となっている。また、光学系・輸送チャンネルで通常10~20m程度である。実 験ホールの終端までビームラインを延長したとして約80m、屋外に出てたとえば医学利用実験棟に延 びる中尺ビームラインで200~250m程度、長尺ビームラインで1kmとなる。

表 1. SPring-8 ビームラインの一覧 (2003 年 5 月現在)

偏向電磁石ビームライン (稼動中・建設中 20 + 残り 4)

BL01B1, BL02B1, BL02B2, BL04B1, BL04B2, BL12B2, BL14B1, BL16B2, BL19B2, BL20B2, BL26B1, BL26B2, BL28B2,

BL32B2, BL33LEP, BL38B1, BL38B2, BL40B2, BL43IR, BL44B2

(残り: BL08B2, BL14B2, BL22B2, BL29B2)

挿入光源ビームライン (稼動中・建設中 27+ 残り 11)

BL05SS, BL08W, BL09XU, BL10XU, BL11XU, BL12XU, BL13XU, BL15XU, BL16XU, BL17SU, BL19LXU, BL20XU, BL10XU, BL10

 $\mathsf{BL22XU}, \mathsf{BL23SU}, \mathsf{BL24XU}, \mathsf{BL25SU}, \mathsf{BL27SU}, \mathsf{BL29XUL}, \mathsf{BL35XU}, \mathsf{BL37XU}, \mathsf{BL39XU}, \mathsf{BL40XU}, \mathsf{BL41XU}, \mathsf{BL44XU}, \mathsf{BL44XU$

BL45XU, BL46XU, BL47XU

(残り: BL03IN, BL07IS, BL21IN, BL28IN, BL31IS, BL32IN, BL33IN, BL34IN, BL36IN, BL43IS, BL48IN)

合計: 稼動中・建設中 47 + 残り 15 = 62

ビームライン番号 BL##**における末尾**の説明

B1, B2: 偏向電磁石ビームライン.1,2 は蓄積リング同一セル中の偏向電磁石1と2の区別

XU: 硬 X 線アンジュレータビームライン

SU: 軟X線アンジュレータビームライン

IN: 挿入光源ビームライン (標準長) 予定 → 将来 XU, SU などになる

IS: 挿入光源ビームライン (30 m 長直線部)予定 → 将来 LXU, LSU などになる

特殊なビームライン呼称

BL05SS: 加速器診断用ビームライン

BL08W: マルチポールウィグラビームライン

BL19LXU: 27 m 長アンジュレータ硬 X 線ビームライン

BL33LEP: レーザ電子光によるガンマ線利用 (レーザー電子相互作用領域はセル 33B1-B2 間の直線部)

BL43IR: 赤外ビームライン (光源はセル 43 の偏向電磁石 B2)

表 2. 中尺ビームライン (12本),長尺ビームライン (3本)の内訳

蓄積リング棟付属施設 W (> 100 m)	BL19LXU, BL19B2
医学利用実験棟 (200~250 m)	BL20XU, BL20B2, (BL21IN)
RI 棟 (>100 m)	BL22XU, (BL22B2), BL23SU
その他中尺 BL (~300 m)	(BL32IN), BL32B2?, (BL33IN), BL33LEP?
長尺 (1 km)	BL29XU, (BL29B2?), (BL31LXU?)

2-2. ビームラインの真空

ビームラインは通常真空に保たれている.これは、主として次のような理由による. (1) 蓄積リングの真空を維持するため

蓄積リングは、電子ビームが残留ガスと衝突することにより蓄積電流が減少することを防ぎ(ライ フタイムをのばし)、また、その際制動放射される高エネルギーガンマ線の発生を極力抑えるために超 高真空に保たれている.蓄積リングの超高真空を維持するため、それに直接つながるビームラインも より上流側、すなわちフロントエンドなど蓄積リングに近くなるほど高い真空度が要求される.

(2) 不要な吸収・散乱を避けるため

一つには、放射光を実験ステーションに導くまでに空気による吸収、散乱により放射光強度そのも のが失われることを避けるためであり、また、ビームライン途中で不要な散乱が生じ放射線が漏洩す ることを避けるためである.

(3) 光学素子の汚染,損傷を避けるため

酸素,油分などと放射光の光化学反応による光学素子表面の汚染,損傷を避けるため,これらの成分 が極力少ない酸素フリー,オイルフリーな真空が望まれる.

2-3. フロントエンドの基本的な構成

フロントエンドの機器構成の一例について図2に示す. これは27m長尺アンジュレータを光源とし, 最大33kWの出力に対応するSPring-8で最も熱的な条件の厳しいビームラインBL19LXUに設置され ているものである.標準的なアンジュレータビームラインでは14kW,偏向電磁石ビームラインでは 300W程度の出力に対応している.光源の出力の違いはあるものの,各コンポーネントの機能に関する 基本的な考え方は他の標準的なアンジュレータビームラインや偏向電磁石ビームラインのフロントエ ンドも同様である.

フロントエンドの果たす役割は概して以下のようになる.

(I) 蓄積リングとの接点

2-2 で述べたように、蓄積リングの超高真空を維持するため、フロントエンドについても超高真空対応のコンポーネント、排気系が用いられている.真空ポンプとしてはイオンポンプなどが主として用いられており、適宜4~5の真空区間ごとに排気されている.典型的な圧力は10⁻⁷~10⁻⁵ Paである.機器は全て超高真空対応の材料、真空規格が用いられ、ベーキングによって脱ガスがおこなわれているとともに、放射光の照射部分は光脱ガスも十分におこなわれ、運転中に急激に圧力が上昇することがないように注意深く真空に関して管理されている.

通常の X 線ビームラインの場合,フロントエンドと光学系・輸送チャンネルの間にベリリウム窓が 取り付けられ,上流の超高真空と下流の高真空領域を仕切っている.フロントエンド終端部のベリリ ウム窓は,厚さ 250 µm 程度で,白色放射光による熱負荷に耐えるため水冷されている.中間真空チェ ンバをはさんで二重に配置されており,真空破断事故に対する信頼性を高めている.5 keV 以上の X 線 を利用する場合,この程度のベリリウム窓による吸収はまったく問題にならない.

(II) 放射光の導入/遮断

収納部内から実験ホール側への放射光の導入/遮断はメインビームシャッタによっておこなわれる. 通常メインビームシャッタ (MBS) と称しているのは、上流部のアブソーバと収納部出口手前にある ビームシャッタという二つのコンポーネントの組である.これらは通常の使用においては連動して制 御されている.

ビームシャッタにおいては、放射光およびガンマ線を遮断するための長さ400 mmのタングステンブ ロックがエアシリンダにより上下し、放射光を通し、もしくは、遮断している. ビームシャッタ自身は、 放射光の熱負荷に対して冷却の機能をもっておらず、放射線を遮断するためのものである. ビームシ ャッタが閉じているときに放射光の熱を受けるのは上流に設置されているアブソーバであり、水冷さ れたグリッドコップ (アルミナ分散強化銅) に斜めのすれすれ入射でビームを受けることにより照射 面積を大きくし、熱負荷を分散させて、トータル 30 kW (標準アンジュレータビームラインでは 10 kW 強)、パワー密度 2 kW/mm² (標準アンジュレータビームラインで 1 kW/mm²強) にもおよぶ高熱負 荷に対処している.

(III) 高熱負荷の制御およびビームの加工

アンジュレータビームラインにおいては光軸からはずれた方向のビームは分光後にはほとんど利用 されないばかりでなく、分光結晶などの初段の光学素子に対して不必要な熱負荷を与えることになる. このため、マスク、XY スリットなどにより空間的にビームを制限することにより最終的に利用されな い軸外の放射光成分はフロントエンド部で除去されている.これらのコンポーネントに関する熱の対 処の仕方も原理的にアブソーバと同様である.

BL19LXUでは、入力段階で33 kW あった放射光のうち、分光して使うのに必要な成分を含む約500 W を光学系・輸送チャンネルに出力し、残りはフロントエンドにおいて処理している.

なお, 偏向電磁石ビームラインにおいてはフロントエンドには XY スリットは無く, 代わりに光学 系・輸送チャンネルに水冷の XY スリットが設置されている.

(IV) 光位置モニタ

蓄積リング中を周回する電子ビームの軌道はすぐさま放射光の光軸に反映する.軌道が安定である か,もしくは何らかの原因で軌道が動いたことを放射光の強度分布からモニタするのがフロントエン ドに設置される光位置モニタである.

図 2. フロントエンドの機器構成例 (BL19LXU)

通常,光軸中心から少しはずれた位置に上下,左右対称に4個の光電子放出ブレード(電極)が取り 付けられ,放射光の一部がこれらブレードにあたるようになっている.これらからの光電子の放出量 の違いからビーム位置を算出する.光位置モニタは,マスクなどでビームが空間的に制限される前の プロファイルを観測する必要があるのでフロントエンドでもかなり光源に近い上流部にあり,ブレー ドが受ける放射光パワー密度は極めて高い.したがって,光電子放出の安定性に優れ,かつ熱的な耐性 に優れたタングステンやダイアモンドが用いられている.

2-4. 光学系・輸送チャンネルの基本的な構成

光学系・輸送チャンネルの機器構成について一例を図3に示す.ここでは遮蔽ハッチについても広い 意味で光学系・輸送チャンネルに含むものとする.

それぞれの機器の果たす機能について簡単に説明する.

(I) 遮蔽ハッチ

高エネルギーの X 線を含む放射光ビームラインにおいては、その途中で放射光が光学素子、スリットなど何らかのものに当たった際に生じる散乱線を遮蔽するためのものが必要である. 遮蔽ハッチは この目的でビームラインを囲むように設置されている. 図 4 は遮蔽ハッチの構造を模式的に示したものである.

SPring-8 では、ガンマ線を伴う白色放射光が導入されるハッチを光学ハッチ、分光後の単色 X 線が導入されるハッチを実験ハッチと称して区別している (そのハッチにおいて実験をおこなうか否かの区別ではない).別の言い方では、ガンマストッパが設置されているハッチが光学ハッチである.

遮蔽ハッチは,基本的に厚さ 5 mm 程度の 2 枚の鋼板の間に所定の厚さの鉛板をはさみ込んだサン ドイッチ構造のパネルによって構成されている.鉛の厚さは,光源の種類,出力,散乱体の種類,幾何 学的な配置などに基づいて遮蔽計算によって決められている.光学ハッチでは 10~50 mm 程度,実験 ハッチでは3~10 mm 程度である.以下で述べるエンドストッパや局所遮蔽といった遮蔽体を併用する ことにより効果的な放射線遮蔽がなされている.

(II) 光学系・輸送チャンネルにおける真空

2-2 で述べたうち (2),(3) が主として光学系・輸送チャンネルにおいて真空を必要とする理由である. 標準的な X 線ビームラインの光学系・輸送チャンネル部の真空排気は 300 L/s 程度のターボ分子ポン プとオイルフリーのスクロールポンプの組み合わせで適当な真空区間ごとに区切って排気している. 到達圧力は排気するコンポーネントにも依存するが 10⁻⁶~10⁻³ Pa である.大気中で実験をおこなうステ ーションにおいてはビームライン終端に厚さ 250 μm 程度のベリリウム窓を取り付けて,大気中に放 射光を取り出している.

軟 X 線のビームラインではベリリウム窓などでの X 線の吸収が無視できない.このため実験ステー ションに至るまで超高真空を維持するか,差動排気系を介して高真空〜低真空側へ放射光を導入する. (III) ビームの加工

結晶分光器や全反射ミラーを用いて,エネルギーの選択,ビームの集光など光学的な処理をおこなう.これらについては次項3において説明する.

また、スリットによりビームを空間的に制限し、不要なビームを除去するなどの加工がおこなわれる. 偏向電磁石ビームラインの白色用スリットでは、まず水冷された銅ブロックにより放射光を受け 熱的に対処し、その下流側に熱的に接触された Ta ブレードによって X 線を遮断する. 白色、単色いず れの場合も 100 keV 程度の高エネルギーX 線まで遮断できるように Ta は厚さ 5~10 mm のものが用いられる.

(IV) 放射光の導入/遮断

分光器による分光後のビームを実験ハッチへ導入もしくは遮断するために光学ハッチ内に下流シャ ッタが置かれている.これにより実験ハッチに人が入り作業などをおこなっている際も分光結晶には 放射光が照射され続けていることになり,熱負荷を定常に,すなわち,分光性能を安定にすることがで きる.

遮断すべき単色X線のエネルギーや強度にもよるが,通常では厚さ100mmの鉛をステンレスのケースに封入したブロックが真空チェンバのなかに取り付けられ,エアシリンダによって上下することによりビームの下流側ハッチへの導入と遮断をおこなっている.

(V) ガンマストッパ, エンドストッパ

蓄積リング中の残留ガスと電子との衝突により生じる制動放射は数 GeV のガンマ線となる. その一部は放射光とともにビームラインに沿って収納部外に出てくる. ガンマストッパは, このガンマ線が それより下流に伝わるのを阻止するためのものである. 通常, 厚さ 300 mm, 断面積 300×300 mm²程 度の鉛ブロックが用いられる.

二結晶分光器を有するビームラインにおいては、その直下流にガンマストッパが設置され、光源からの直接的なビームライン光軸に対して数十 mm オフセットをつけた位置に真空パイプを通して二結晶分光器からの出射ビームだけを下流に通す.標準二結晶分光器ではオフセットは上 30 mm である.

放射光ビームがビームラインの終端部まで直接届く場合,遮蔽ハッチの後面パネルだけでは遮蔽能 力が十分でなく,付加的にエンドストッパが設置されている.単色 X 線の場合で通常厚さ 100 mm,断 面積300 ×300 mm²程度の鉛ブロックが用いられる.白色の放射光が最下流まで届く場合には,前記の ガンマストッパが設置されることになる.

タンデム型に複数の実験ハッチが並ぶ場合,上流側のハッチには可動エンドストッパが置かれ,こ れが軸上にあれば下流側のハッチ内への入室が可能になる.タンデム型の光学ハッチでは可動ガンマ ストッパが用いられる.

(VI) 局所遮蔽

白色の放射光を直接受ける光学素子(分光器,ミラー,スリットなど)においてはここから散乱され る散乱 X 線を遮蔽ハッチ単独で遮蔽するのではなく,発生源のごく近傍を局所遮蔽により効果的に遮 蔽することがある.標準型の二結晶分光器のチェンバ周りなどに鉛板が貼られているビームラインを 見る機会があるかも知れないが,これも局所遮蔽の一例である.

図 3. 偏向電磁石ビームライン BL02B1 の光学系・輸送チャンネルの構成

(VII) スクリーンモニタ

光学ハッチ内においてもビーム位置の確認が必要な場合がある.一例は二結晶分光器からの反射ビームを最初に探すときである.このような目的で蛍光板をエアシリンダにより光軸上に出し入れする スクリーンモニタが用いられている.

図4. 遮蔽ハッチの模式図

3.X線ビームラインにおける主要光学系

3-1. 結晶分光器

一部の白色の放射光をそのまま用いる実験ステーションを除き,結晶分光器は X 線ビームラインに おいて必要不可欠な光学系コンポーネントである.分光の原理は完全結晶による Bragg 反射である.結 晶分光器の主たる機能は,(i) 所定のエネルギーの X 線を分光し取り出すこと,(ii) エネルギー幅を実験 に必要なものに制御することである.また,(iii) 通常用いられる二結晶分光器では,エネルギーを変え ても分光器を出射して試料に至るまでの光軸を変えないこと,さらに,(iv) 結晶の曲げによりビームを 集光することなどの機能が加わる.

(I) 分光結晶

SPring-8 における分光結晶は大半が Si である. これは,半導体産業において Si が主材料であること と大きく関連しており,完全で大きな単結晶が安価に得られること,切断や研磨などの加工技術が確 立していることなどがその理由である. また,半導体材料としての Si 結晶を X 線的に評価してきた歴 史的な背景も手伝って Si 結晶についての X 線光学的な特性が古くから熟知されていることも一因であ ろう.

一部のビームラインではその熱的特性の優位さや、X線透過率の高さなどの理由によりダイアモンドが用いられている.

(II) 分光可能なエネルギー範囲

SPring-8の標準型二結晶分光器は3~27°の範囲でBragg角が選択できるようになっている. Si 111反射, 311 反射, 511 反射などが主として用いられ,これらの反射により4.4~110 keVの範囲の分光が可能である. 図5はこれらの反射において分光可能なエネルギー範囲をBragg角の関数として表したものである.

図 5. 分光可能なエネルギーと Bragg 角の関係

(III) 回折曲線

完全で大きな単結晶における X 線の回折は,動力学的回折理論を用いて説明できる.加工ひずみや 熱ひずみのないSi結晶の場合,回折曲線 (反射率,回折幅の角度もしくはエネルギー依存性) は完全結 晶に対する動力学的回折理論を用いて計算したものと実際とは極めて良く一致する.図 6 は回折曲線 の入射角依存性 (イントリンシックなロッキングカーブ)の計算例である.吸収が少ない硬 X 線領域 では反射率のピーク値は1に近い.

図7にはSi 111 反射, 311 反射, 511 反射の回折幅のエネルギー依存性を示した. これからわかるよう に 0.1~100 µrad のオーダの回折幅を有している. 同じグラフ中に偏向電磁石および標準アンジュレー タからの放射光の角度発散を示した. SPring-8 において, 偏向電磁石からの放射光の発散は回折幅に比 べて 1 桁程度大きいが, アンジュレータからの放射光の発散は回折幅と同程度である.

図 6. Si 結晶の回折曲線の計算例

図 7. 回折幅のエネルギー依存性および光源の発散角

(IV) エネルギー分解能

結晶分光におけるエネルギー分解能は、結晶に入射するビームの角度発散 Ωと、結晶そのものが有する回折幅 ωのコンボリューションによって決定される.すなわち、

$$\frac{\Delta E}{E} = \cot \theta_{\rm B} \sqrt{\Omega^2 + \omega^2} \tag{1}$$

で与えられる.

図8は標準アンジュレータ,偏向電磁石を光源としたときのエネルギー分解能について示したもの

である.ここでは、光源からの発散についてはスリットなどの制限は無く、そのものの自然発散を考えている.したがって、スリットなどで光源からの発散を制限すると幾分分解能は向上することになる. 通常の使用条件では10⁵~10⁴程度である.

図8. 標準アンジュレータ, 偏向電磁石を光源としたときのエネルギー分解能

(V) 二結晶分光器における定位置出射の原理

定位置出射型の二結晶分光器を用いることにより, Bragg 角を変えて取り出すエネルギーを変化させても常に出射ビームの位置を一定に保つことができる.これにより,ユーザにとって利便性をもたらすことになる.

二結晶分光器における定位置出射の原理は、同一の格子面間隔を有する結晶を用いて、例えばまず 斜め上方向、次に反対方向に振り戻す二回の反射をさせることにより入射ビームと出射ビームを平行 に保つこと、それに加えて、二つの結晶の相対的な位置関係に対して適当な並進動作を加えることに より、Bragg角を変化させても出射ビームの位置を一定に保つことである.

図 9 を用いて定位置出射に必要な結晶の並進 の条件を求めてみる. Bragg 角を変化させてもオ フセット h を保つためには,幾何学的考察から,

$$y = AB = \frac{h}{2\sin\theta_B}, \quad z = OB = \frac{h}{2\cos\theta_B}$$
 (2)

の関係を満たす必要があることがわかる.これ らの式から6kを消去すると、

$$(y^2 - h^2/4)(z^2 - h^2/4) = h^4/16$$
 (3)
が得られる. これは y, z ともに h/2 に漸近する 4
次曲線を表している.

図 9. 定位置出射を可能とする結晶の角度, 位置

上で述べたような二軸y-zの並進を実現する一つの方法として, SPring-8の標準型二結晶分光器では 図 10 に示すようなコンピュータ+カムリンク方式が用いられている.この方式では第一,第二結晶と も同一の θ 回転ステージ上にあり,反射する格子面の平行が保たれたまま Bragg 角を変えることができ る.第一結晶について二軸の並進を伴う.実際の駆動 $\theta-y$ についてコンピュータリンク, y-zについ てカムによるリンクがおこなわれる.カムの形状は上記のy-zに関する式 (3)に基づいて決められて 図 11 に SPring-8 標準二結晶分光器の概観を示す.

図 10. コンピュータ+カムリンク方式による定位置出射

(VI) 調整ステージ

実際に使用される二結晶分光器では、上で述 べた主要なステージ(*θ*-*y*-*z*)以外にも多くの 調整ステージを有している.図12はアンジュレ ータビームライン用のステージの構成を示した ものである.Bragg角の微調整、アオリ、面内回転、 結晶位置の調整などの調整機構を有している. これらの送り精度、ストロークについて表3に示 す.例えばBragg角の微調整については回折幅以 下の精度が必要であり、この場合 0.05 µrad とな っている.その他の回転軸についても1 µrad程度 かそれ以下、並進軸で0.1 µm 程度となっている.

図 11. SPring-8 標準二結晶分光器の概観

図 12.標準二結晶分光器のステージ構成

表 3. SPring-	3 標準二結晶分光器におけ	る調整ステー	ジの精度とス	トローク
--------------	---------------	--------	--------	------

軸名称	軸記号	精度	ストローク
主回転軸	θ	1 μrad	$0 \sim 30^{\circ}$
第一結晶併進	Y_1	1 μm	270 mm
ステージ高さ	Z_1, Z_2	0.1 µm	15 mm
Bragg 角微調	$\Delta \theta_1, \Delta \theta_2$	0.05 µrad	±3°,9 nrad (ピエゾ駆動)
ステージ併進1	X_1, X_2	0.05 µm	$\pm 5 \text{ mm}$
面内回転	ϕ_1, ϕ_2	2.2 µrad	$\pm 5^{\circ}$
ステージ併進 2	xx_1, xx_2	0.1 µm	$\pm 5 \text{ mm}$
結晶傾斜 (アンジュレータ用, θ方向)	Ty_1, Ty_2	0.1 µrad	$\pm 2^{\circ}$
結晶アオリ (アンジュレータ用)	Tx_1, Tx_2	0.1 µrad	$\pm 2^{\circ}$
反射面切替, アオリ (偏向電磁石用)	α_1, α_2	0.87 µrad	$-15^{\circ} \sim +30^{\circ}$

(VII) 結晶の冷却

SPring-8 のビームラインでは結晶分光器は光源から 30~40 m 付近に設置される.光源の種類にもよ るが,第一結晶が受ける熱負荷は最大数百 W/mm²になる.結晶を冷却しないで用いれば最悪の場合融 解,破損に至るが,そうでなくても熱膨張による結晶のひずみ,第一結晶と第二結晶の格子面間隔の不 整合などをもたらし,分光器の基本的な性能を劣化 (強度の低下,発散の増大,出射方向の変化) につ ながる.パワー密度に応じた冷却方法が用いられている.第二結晶についても第一結晶における分光 後の単色 X 線のみならず,第一結晶において Compton 散乱された X 線が第二結晶に入射した結果,第 二結晶が受ける熱も無視できず,それなりの冷却を必要としている.

表4はSPring-8における分光結晶の冷却方法をまとめたものである.

(1) 偏向電磁石ビームライン用間接冷却

Si の平板結晶を InGa などを介して水冷された Cu ブロックに熱接触させる方式である. 照射パワー およびパワー密度が小さければ使用可能であろうが, SPring-8 の偏向電磁石ビームラインにおいては 冷却能力不足であり,以下に述べる直接冷却を使用するほうが望ましい場合が多い.

第二結晶の冷却については、同様の間接冷却が用いられる.

(2) 偏向電磁石ビームライン用フィン結晶直接冷却

図 13 に偏向電磁石ビームライン用水冷第一結晶を示す.シリコンの裏面にはフィン型の流路が加工 され直接水冷されている.冷却水が真空中に漏洩することがないように結晶とホルダの間は O リング によってシールされている.この際,結晶をひずませることが無いように押さえ方が慎重にコントロ ールされている.

(3) アンジュレータビームライン用ピンポスト結晶直接冷却+回転傾斜型配置

図 14 はアンジュレータビームライン用の回転傾斜配置について示したものである. 結晶表面は反射 面 (格子面) に対してβ=80° となるように切り出され, 面内回転 (表 3 のφ軸) によって視射角 (Bragg 角とは異なる) を 1°程度になるように調整する. これによって結晶表面における照射面積を 50 倍程 度拡大して熱負荷を軽減する.

図 15 はピンポスト結晶について示したものである. Si 基板へのピンポストの形成, Au-Si 共晶接合に よる Si どうしの接合 (ピンポストのある面が接合される), 反射表面の研磨およびエッチングなどの加 工工程を経てピンポスト結晶が製作される. ピンポスト結晶では表面から 0.5~1 mm 程度の深さにピ ンポストの層があり, ここに直接冷却水を流すことにより効果的に冷却がおこなわれる.

結晶とホルダ間のシールに関し注意すべきことはフィン型冷却と同様である.

この方法は、現在 BL09XU, BL10XU, BL15XU, BL16XU, BL37XU, BL39XU, BL41XU, BL44XU, BL46XU において用いられている.

(4) アンジュレータビームライン用液体窒素冷却

Si は液体窒素温度付近において熱膨張係数が極めて小さくなる. この性質を利用して冷却に関する Figure of merit である熱伝導率/熱膨張係数の比を大きくとることができ,実効的に冷却効率を高めるこ とができる. 図 16 は液体窒素冷却における結晶とホルダを示したものである. 側面からの間接冷却の 方法をとっている. また,図 17 は液体窒素の循環システムを示したもので,ヘリウム冷凍機を介して 熱交換をおこなっている. この方法は,現在 BL12XU, BL13XU, BL19LXU, BL20XU, BL29XU, BL35XU, BL47XU において用いられている.

図 13. 偏向電磁石ビームライン用直接水冷第一結晶.

図 14. アンジュレータビームライン用回転傾斜配置.

図 15. アンジュレータビームライン用ピンポスト結晶.

図 16. 液体窒素冷却方式における結晶および結晶ホルダ

図 17. 液体窒素冷却における循環装置

表 4. SPring-8 における分光結晶の冷却方法

(1	(1) 偏向電磁石ビームライン	
	照射パワー密度: ~1 W/mm ² @40 m	
	冷却方式: 間接冷却 (Si/InGa/水冷 Cu ブロック)	
	もしくは フィン結晶直接冷却	
(2) 標準 X 線アンジュレータビームライン (リニアアンジュレータ, <i>N</i> = 140, <i>λ</i> u= 32 mm)	
	照射パワー密度: ~300 W/mm ² @40 m	
	冷却方式: ピンポスト結晶直接冷却 + 回転傾斜型配置 (→1~10 W/mm²)	
	もしくは液体窒素間接冷却	
(3) 長直線アンジュレータビームライン (BL19LXU)(リニアアンジュレータ, <i>N</i> = 781, <i>λ</i> u= 32 mm)	
	照射パワー密度: 580 W/mm ² @58 m	
	冷却方式·海休窑素間接冷却	

3-2. 全反射ミラー

全反射ミラーは、以下のような目的でビームラインにおいて広く用いられている.

(1) ローパスフィルタ (高エネルギー成分除去)

分光器の基本波に付随する高調波成分の除去など

- (2) 湾曲ミラーによるビームの集光, 平行化
- ・研磨によるサジタル方向のシリンドリカルミラー
- ・曲げによる子午線方向のシリンドリカルミラー
- ・これらを組み合わせた擬似トロイダルミラー
- ・より複雑な形状の非球面ミラー
- (3) ビーム偏向

ブランチビームライン切り替え

X線領域においては、屈折率がほとんど1程度であるので、原理的に反射率の高い直入射ミラーを得ることができない.しかしながら、屈折率が1よりごくわずかに小さいため臨界角以下の表面すれすれの入射により媒質中において屈折波は存在しえず全反射がおきる.

全反射がおきる臨界角 (表面から測った角度) は $\theta_c = \sqrt{2\delta}$ で与えられる.ここで、 δ はミラー媒質の 屈折率 n の1からのずれ (実部) である.ミラー材料 (電子密度)、フォトンエネルギーなどに依存する が X 線領域では臨界角は数 mrad 程度である. X 線領域では波長が極めて短いことから反射率は表面粗 さの影響を受けやすく、表面粗さは 1 nm rms のオーダかそれ以下が要求される.

SPring-8 の X 線ビームラインにおいては、ミラー母材としては石英やシリコンを研磨したものが用いられている. 熱的, 放射線的な耐性から白色放射光を受けるミラーの材料として石英は適さず, SiC ミラーが用いられることも多いが, SPring-8 では材料の入手のしやすさ, 加工のしやすさ, 熱的な性質のいずれの観点からも Si を用いている. 一方, 熱負荷のない単色 X 線用には石英を用いている.

ミラー表面のコーティング材料は、使用エネルギー、反射率、吸収端などを考慮して選択される. SPring-8 では、Pt, Rh, Niなどが用いられている. これらのコーティングを施すことにより Si や石英母材 に比べて同一のフォトンエネルギーに対する臨界角を大きくすることができ、その分同じビームサイ ズのビームを反射するのに必要なミラーの長さを短くすることができる. ミラーに対する視射角は X 線ビームラインの場合 2~10 mrad の範囲で適当に選ばれる. 図 18 に Pt, Rh をコーティングした場合の 反射率曲線を示す.

必要となるミラーの長さは、光源や焦点からの距離、取り込み角度などによって決まる. 例えば、偏 向電磁石からの放射光の縦方向発散角約 100 μrad、光源からミラーまでの距離 30~40 m、視射角 2~10 mrad とすると少なくとも1 m 長のミラーが必要となってくる. SPring-8 における X 線ビームライン用 の標準ミラーは以下の3 種類となっている.

(1) アンジュレータビームライン用,400 mm 長,縦偏向

- (2) アンジュレータビームライン用,700 mm 長,横偏向
- (3) 偏向電磁石ビームライン用,1m長,縦偏向

図 19 は偏向電磁石ビームライン用の1m長ミラーおよび保持機構を示したものである. このミラー は白色の放射光を受けるため、側面に水冷された銅ブロックを熱接触させ挟み込む格好で間接冷却が なされている. また、光軸方向に沿ってミラーを曲げる機構を有し、曲率半径 1~10 km のオーダで曲 げることができ、これによってビームを縦方向に集光したり平行にしたりする.

図 18. 全反射ミフーの反射曲線の計算例 (Pt および Rh コーティングの場合)

図 19. 偏向電磁石ビームライン白色用ミラー および保持機構 (1 m 長用,水冷およびベント機構付)

3-3. 偏向電磁石ビームラインにおける強度の計算例

図20は偏向電磁石ビームラインにおける強度 (スペクトル)の計算例である.図3に示したBL02B1 の光源・光学系を想定したものである.偏向電磁石からの放射光スペクトル (a) が全反射ミラーによ り15 keV 以上の高エネルギー成分が除去され (b), Be 窓による吸収により10 keV 以下の低エネルギー 成分が幾分減少していることがわかる (c).これに結晶分光器による分光が加わり,最終的な単色 X 線 (d) が得られることになる.図21 は回折強度曲線から計算によって求めた実効的なバンド幅である. 低エネルギーにおいて吸収により反射率が低下することからバンド幅は低下する傾向にあるが,エネ ルギーが高くなると一定値に近づき, Si 111 反射において 1.4×10^4 , Si 311 反射において 2.8×10^5 , Si 511 反射および Si 333 反射において 8.5×10^6 となる. 図 20 の(a)~(c)は 0.1%バンド幅あたりの強度である から, これを 1000 倍したのち上記の結晶分光器における実効的なバンド幅を乗ずることによって分光 後の強度を計算することができる. 図 20 (d) はこのようにして Si 111 反射の場合の強度を描いたもの である. この例では, 蓄積電流値 100 mA, 光源から 50 m の位置, フォトンエネルギー10 keV について 約 3×10^9 ph/s/mm²のフォトンが得られることがわかる.

さて,高調波除去の効果については、ミラーによって、例えば10 keV の場合、3 倍高調波 (30 keV) を 3×10⁻⁵ 低減できることがグラフから読み取れるが、これに加えて、結晶分光器の実効バンド幅分でさらに 0.06 程度低減され、合わせて 3 倍高調波は6 桁低減されることがわかる.

光源,光学系の条件が変わっても同様の考え方によりそのビームラインにおいて得られる強度を見 積もることができる.

図 20. 偏向電磁石ビームラインにおける強度の計算例. 光源 からの距離 50 m における軸上の光子密度を表す. (a)~(c)は 0.1%バンド幅あたりの強度, (d) は図 21 の実効的なバンド幅 を考慮した分光後の強度を表す.

計算した実効的なバンド幅.

4. インターロック・制御

ビームラインを使用する際にはビームラインインターロックシステムおよびワークステーション /PC による制御システムに直接触れる機会が多い.いずれも作業者の放射線安全を確保しつつ,機器を 安全な操作範囲内で操作,監視し,ユーザの希望するビームを供給するための重要なインターフェイ スでもある.これらは個々のビームラインで独立に動いているのではなく,加速器全系ともリンクさ れ重要な情報がやり取りされている.

4-1. ビームラインインターロックシステム

ビームラインインターロックシステムは、個々のビームライン機器の状態を人的保護/機器的保護の 両面から判断して自動的に機器を操作し、また、条件が整った場合のみ操作パネルを通してユーザか らの機器操作を受け付けるシステムである. 操作パネルから操作可能な機器はメインビームシャッタ,下流シャッタ,ゲートバルブ,スクリーン モニタなどの圧縮空気/エアシリンダ駆動の機器である.また,これらの開閉状態,遮蔽ハッチの扉/ケ ーブルダクトの開閉状態,ビームラインの各真空セクションの圧力,冷却水流量,圧縮空気の圧力など, 機器の状態を操作パネルにおいて確認することができる.

操作パネルを通してユーザが誤操作することがないようにプログラムが組まれているが,所定の操 作方法を逸脱した直接的かつ危険な個別機器の操作,機器そのものの故障などにより,最悪の場合人 的保護/機器保護のいずれかの理由により蓄積リングに蓄積されている電子ビームを落とす.

以下にビームアボート (電子ビームを落とすこと) に至る可能性のあるものの例を示す.

(1) 遮蔽ハッチが正常な手順で閉じられた場合に、メインビームシャッタ、下流シャッタの開閉をおこ なうことができる. 逆に、扉、ケーブルダクトが開いている場合にはシャッタの操作は受け付けない. しかしながら、放射光導入中に、遮蔽ハッチの正常な閉状態から何らかの原因で開状態とみなされた 場合(扉やケーブルダクトの強制的なこじ開けや、扉の状態を監視しているリミットスイッチの故障)

ビーム導入中でなければ電子ビームのアボートにはならないが、警報を発する.

(2) ビームシャッタを閉じる操作をしたにもかかわらずシャッタの機械的な故障により開いたままに なった場合は、放射線安全上重大なトラブルと判断し電子ビームをアボートする.

(3) 真空系, 冷却系などのトラブルにより放射光導入中にビームライン機器もしくは蓄積リングに対して基大な障害を与えるようなケースではビームアボートする.

放射光導入中でなければゲートバルブを閉じるなどの個別の対処動作と警報の発報がおこなわれる.

4-2. ビームライン制御系

には蓄積中の電子を強制的にアボートする.

ビームライン制御系によって制御される機器は、主としてフロントエンドおよび輸送チャンネルの XY スリット、分光器、ミラー調整機構などパルスモータで駆動されるものである. ビームラインワー クステーション-VME-パルスモータコントローラ・ドライバを通じて各機器は制御されている.

ビームライン毎の専用ワークステーションから直接制御することができるほか, TCP/IP, RS-232C な どによりユーザが用意する PC からもリモートで制御することが可能である. いくつかの制御コマンド が用意されており測定プログラム中に分光器などの制御を組み込むことが可能である.

5. おわりに

SPring-8 のように大型化,複雑化してきたビームラインでは,技術要素ごとの分業化が進む傾向にあり,そこに関わる者たちでさえビームラインの全体像をつかみ難くなっている.ましてや,加工された放射光ビームを実験ステーションで利用する多くのユーザにとって,ワークステーションやPCから条件を入力し,インターロック操作盤から単に操作ボタンを押すだけで希望するビームをとりだすことができるブラックボックスと化しつつあるのが現実である.

この講義において、どのような理由、必然性から個々のビームライン要素が用いられ、組み合わされ、 コントロールされているのか少しでも知っていただければ幸いである.