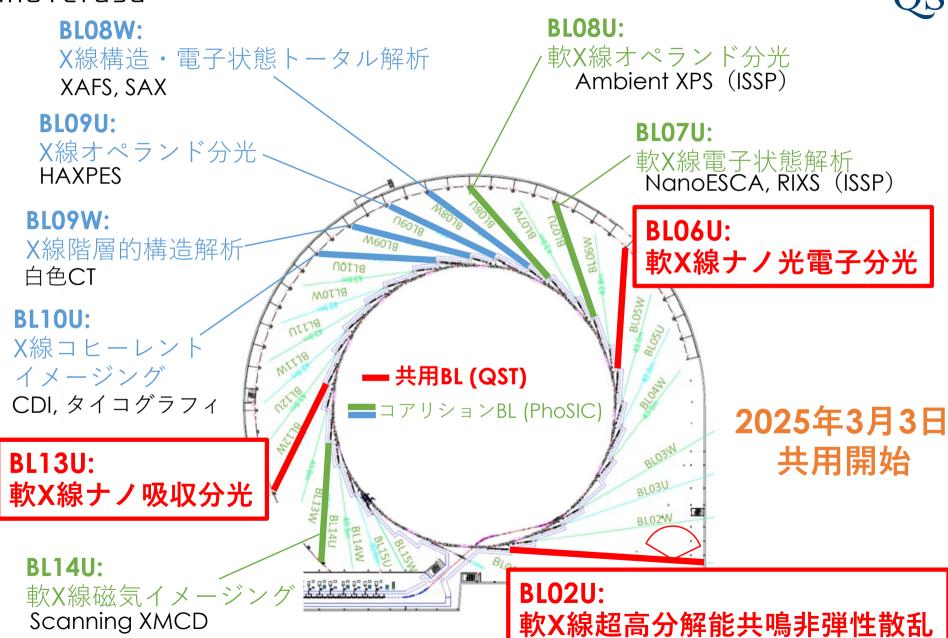


NanoTerasu共用ビームラインの 現状と展望

量子科学技術研究開発機構 NanoTerasuセンター


堀場 弘司

NanoTerasu第一期共用ビームライン

NanoTerasu

NanoTerasu第一期共用ビームライン

		BL02U 軟X線超高分解能 共鳴非弾性散乱	BL06U 軟X線ナノ光電子分光	BL13U 軟X線ナノ吸収分光	
手法		共鳴非弾性散乱 (RIXS)	角度分解光電子分光 (ARPES)	X線吸収分光(XAS) 磁気円二色性(XMCD) 磁気線二色性(XMLD)	
光源	構成	APPLE-IIアンジュレータ 56mm×71周期	APPLE-IIアンジュレータ 75mm×53周期	分割APPLE-IIアンジュレータ 56mm×10周期×4台 移相器3台	
	偏光	水平直線、垂直直線、左右円	水平直線、垂直直線、 左右円	任意(切替速度>~10Hz)	
	分光器	不等刻線間隔平面回折格子 可変偏角分光器	等刻線間隔平面回折格子 入射スリットレス 可変偏角 平行化分光器(cPGM)	不等刻線間隔平面回折格子 入射スリットレス 可変偏角 Monk-Gillieson型分光器	
小田玄	エネル ギー	250 – 2,000 eV	50 - 1,000 eV	180 – 3,000 eV	
光学系	分解能	>150,000 @<1,000eV	> 50,000 @50eV > 30,000 @1,000eV	> 10,000 @全領域	
	集光サ イズ	< 1 μm × <~5 μm	< 100 nm @A branch < 1 µm @ B branch	< 20 µm × 1 µm (集光鏡) < 20 nm × 20 nm (FZP)	
エンド ステー ション	構成	2D-RIXS 全エネルギー分解能 ΔE<10 meV @ 1,000 eV	スピン分解ナノ集光ARPES マイクロ集光ARPES	顕微X線磁気円二色性 走査型透過X線顕微鏡 フリーポート	

実験技術 BL02U 軟X線超高分解能共鳴非弹性散乱 Resonant Inelastic X-ray Scattering

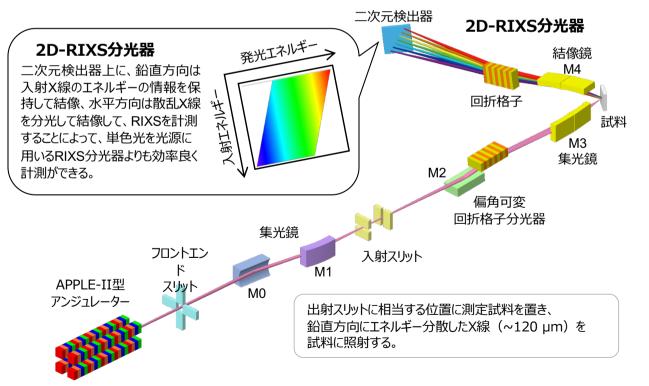
2022年2月更新

電荷・軌道・スピン・格子の素励起のエネルギー分散を世界最高クラスのエネルギー分解能で探る

ビームラインの特徴

BL02Uは、共鳴非弾性X線散乱(RIXS)を超高エネルギー分解能で測定するためのビームライ ンであり、超高エネルギー分解能かつ高効率に分光が可能な2D-RIXS分光器に最適化され ている。RIXSでは、散乱X線のエネルギーと運動量を測定することにより、電荷・軌道・スピン・ 格子の素励起や分子振動などの低エネルギー励起のエネルギー・運動量の分散関係を世界 最高クラスのエネルギー分解能で知ることができる。

実験技術


1. 共鳴非弾件X線散刮、(RIXS)

諸元

RIXS分光器散乱角

光源	APPLE-II型アンジュレーター 周期長56 mm/周期数71/最小 ギャップ値15 mm/最大K値4.62
偏光 (エネルギー範囲)	水平・垂直直線(250–2000 eV) 左右円(250–1500 eV)
エネルギー分解能	E/ΔE>150,000@<1000 eV
試料上フラックス	>10 ¹⁰ photons/s@ <i>E</i> /Δ <i>E</i> >100,000 (出射スリット2 µm相当)
試料上ビームサイズ	<1 µm (H) × <~5 µm (V)* *E/ΔE>150,000@<1000 eV時の 単色光のサイズ。実際は任意の幅のエ ネルギー分散光を切り出して利用。
RIXS分光器 エネルギー分解能	E/ΔE>150,000@<1000 eV ビームラインとあわせて E/ΔE>100,000@<1000 eV

30°≤ 20 ≤ 150°

BLO2U 運用開始時 立ち上げ状況

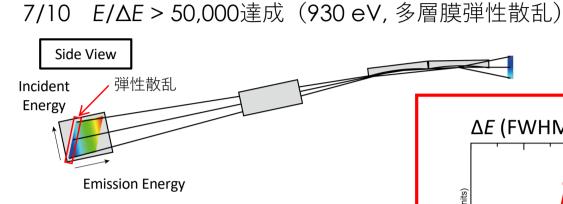
RIXS分光器エネルギー分解能(ビームライン含む)

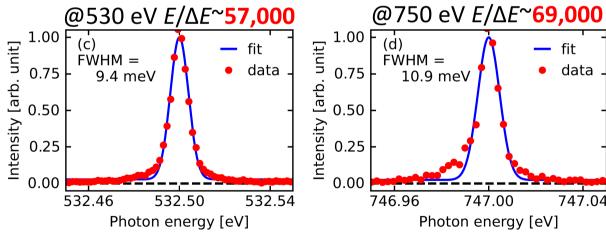
fit

data

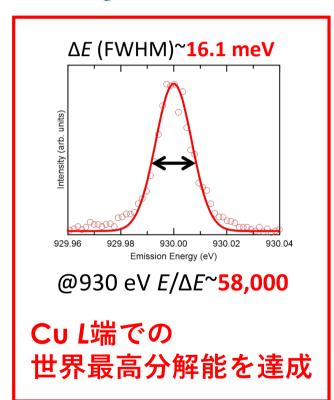
747.04

NanoTerasu


担当者


QST: 宮脇 淳

山本 航平


JASRI: 菅 大暉

Daniel Foster

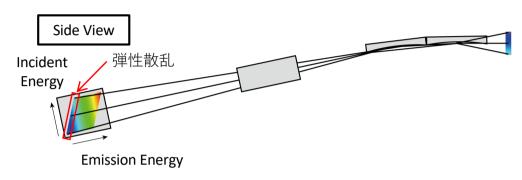
- ・ユーザーに高分解能でのRIXS実験提供している
- ・分光器回転による分散測定での精度向上を開発中

BLO2U 現在の調整状況

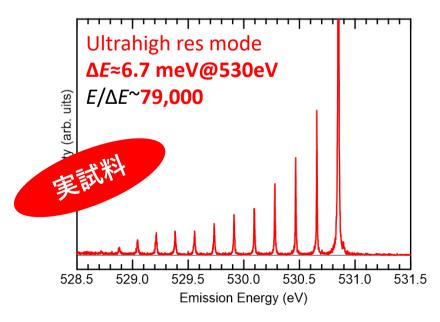
NanoTerasu

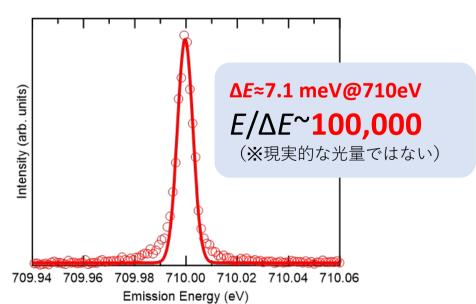
担当者

QST: 宮脇 淳


倉橋 直也

JASRI: 菅 大暉


Daniel Foster


RIXS分光器エネルギー分解能(ビームライン含む)

7/10 E/ΔE > 50,000達成 (930 eV, 多層膜弾性散乱)

更なる高分解能化への調整

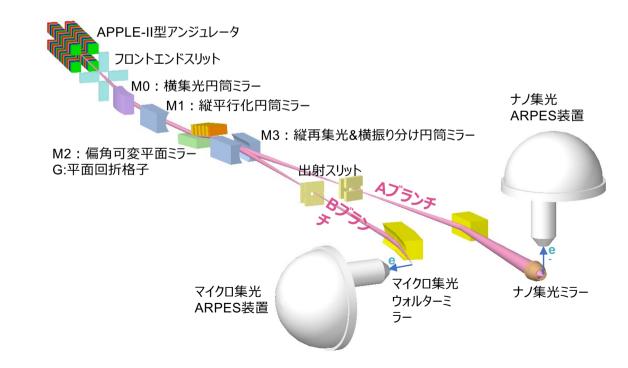
実験技術 BL06U 軟X線ナノ光電子分光

Angle-Resolved Photoemission Spectroscopy (ARPES)

2022年2月更新

物質中の電子のスピン情報まで分解したバンド構造をナノスケールの空間分解能で探る

ビームラインの特徴


BL06Uでは、超精密加工技術を駆使したミラー集光光学系により、これまでにない高フラックス の軟X線ナルビームを供給し、100 nm以下の空間分解能でのスピン・角度分解光電子分光 (SR-ARPES) を実現する。これにより物質中のナノ領域に現れる電子状態をエネルギー・ 運動量・スピン状態まで分解して直接的に観測することができる。ビームラインは2つのブランチに 分かれており、ナノ集光の先端ARPES実験の他に、より汎用的なマイクロ集光ARPES実験 を相補的に利用できる環境を備える。

実験技術

- 1. 角度分解光電子分光(ARPES)
- 2. スピン分解光電子分光(SRPES)

諸元

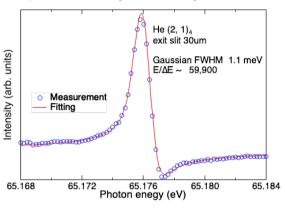
光源	APPLE-II型アンジュレータ 周期長75mm/周期数53/最小 ギャップ値15mm/最大K値7.52			
偏光 (エネルギー範囲)	水平·垂直直線、左右円 (50-1000eV)			
エネルギー分解能	E/ΔE > 50,000@50 eV			
試料上フラックス	> 10 ¹¹ photons/s			
試料上ビームサイズ	Aブランチ: < □100 nm Bブランチ: < □1 μm			
ARPES分析器 エネルギー分解能	1.5 meV			
ARPES分析器 取り込み角度	±30°			

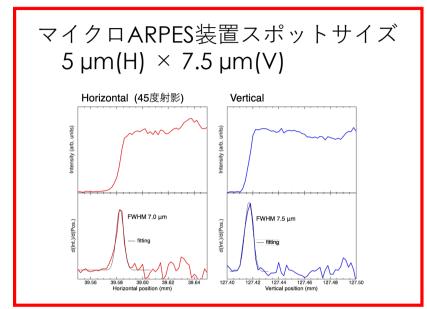
BLO6U 立ち上げ状況

NanoTerasu

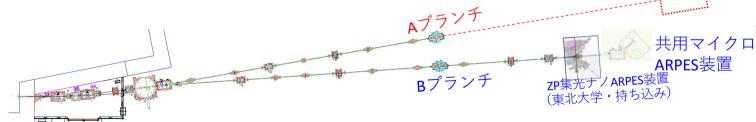
担当者

QST:北村 未歩

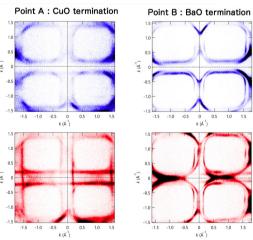

西野 史


JASRI:保井 晃

神田 龍彦


ビームライン分解能目標 *E*/Δ*E* > 50,000を達成

@65 eV $E/\Delta E^{\sim}$ **60,000**



共用ナノARPES装置

- ・BブランチのマイクロARPES装置を共用装置として整備、 10μm以下のスポットサイズで実験が可能
- ・来年度マイクロARPES装置はDeflector機能付きにアップデート予定、 スピン分解検出器も後年整備予定
- ・AブランチのナノARPES装置は今年度設置、整備開始。

ARPES測定データ例: YBCOの終端面依存フェルミ面 (H. Iwasawa et al., submitted.)

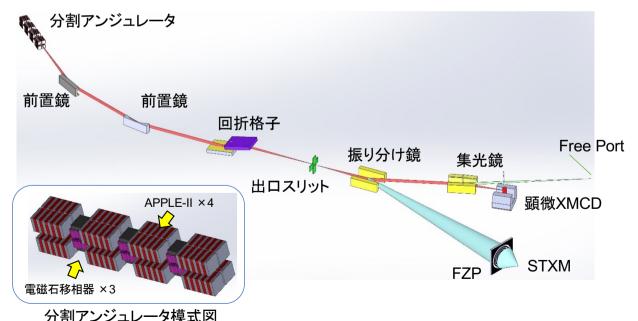
実験技術 BL13U 軟X線ナノ吸収分光

Soft X-ray Magnetic Circular Dichroism (XMCD)

2022年2月更新

電荷・スピンを同時利用する機能性材料の動作原理をナノメートル単位の空間分解能で探る

ビームラインの特徴


BL13Uでは、多様な偏光を生成・制御できるAPPLE-II型分割アンジュレータを用い、軟X線 吸収分光法に基づくX線磁気円二色性(XMCD)等の顕微・ダイナミクス計測を行うことができ る。これにより、磁性・スピントロニクス材料・デバイス等の先端材料における「スピン」をキーワー ドとした基礎学理の解明と研究開発の促進に供することが本ビームラインの目的である。 必要な集光サイズやフラックス、試料環境(磁場・電場・温度等)に応じた複数の試料ステー ションを使い分けることにより、測定目的に最適化したハイスループット計測環境を提供する。

実験技術

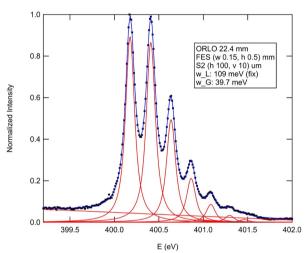
- 1. 軟X線磁気円二色性(XMCD)
- 2. 軟X線磁気線二色性(XMLD)
- 3. 走杳型透過X線顯微鏡(STXM)

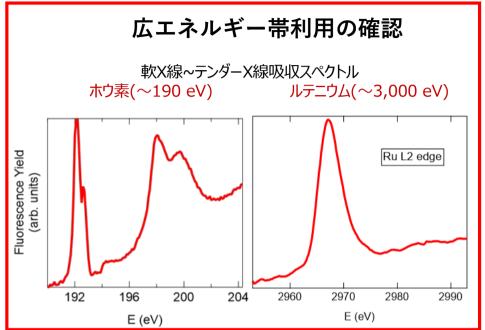
諸元

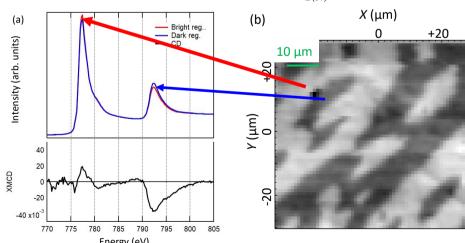
光源	APPLE-II型分割アンジュレータ 周期長56mm/周期数11×4/最小 ギャップ値15mm/最大K値4.62
偏光 (エネルギー範囲)	水平直線(180-3000 eV) 垂直直線(260-3000 eV) 左右円(180-3000eV)
エネルギー分解能	E/ΔE>10,000
試料上フラックス	> 10 ¹³ phs/s/0.01%BW (集光鏡) > 10 ¹⁰ phs/s/0.01%BW (FZP)
試料上ビームサイズ	< 20 µm (H) × 1 µm (V) (集光鏡) < 20 nm (H) × 20 nm (V) (FZP)
偏光切り替え	DC~10 Hz程度(左右円切替・直 線電場方向360°回転)

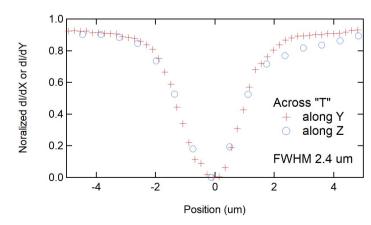
BL13U 立ち上げ状況

NanoTerasu


担当者


QST:大坪 嘉之


JASRI:小谷 佳範 脇田 高徳


ビームラインエネルギー分解能

目標分解能 *E/ΔE* > 10,000を達成 (400eV, 窒素)

SmCo₅磁石(非着磁)の磁区パターン(Co L₃端、円偏光) ※ 試料提供: 李、境、上野(QST・敬称略)

空間分解能 ~2 µmでの 顕微磁気イメージング

共用ビームライン増設の検討

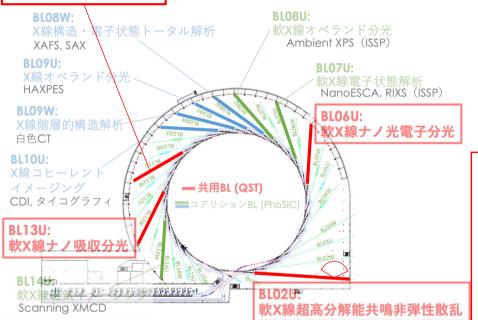
「NanoTerasu共用ビームライン整備検討委員会」により議論・提言

		フェーズ I 2019-2023	フェーズ II 2024-2027	フェーズⅢ 2028-2030	フェーズ IV 2031-
整備期 共用BL (グループ1)	国内における高輝度軟X線利用研究の空白 状態の解消軟X線分光の主要測定手法をカバー	建設・整備	高度化		
高ユーザー ニーズ共用BL (グループ2)	全ての研究者への利用機会、需要に応える測定基盤の提供半導体・デジタルなど国の戦略分野における先端シーズ開拓に早期着手		早期に実現が求機が建設・整備	られる計画	
応用拡大 共用BL (グループ3)	 拡大する応用範囲への対応 フェーズ II の実施状況を見つつ、 フェーズで対応するべき応用範囲を見極める 		<mark>犬況に応じ随時</mark> フィージビリ ティスタディ	画を見直し 建設・整備	
先端利用 共用BL (グループ4)	技術開発を要する先端的放射光利用マルチモーダル測定		既存BLにおり	既存BLにおける技術開発	
R&D BL	 新しい放射光利用の地平を拓く フェーズ II ~ III において、必要な研究開発に着手する 		研究開発	建設·整備	共用化

共用ビームライン(第二期)ラインアップ(案)

NanoTerasu -

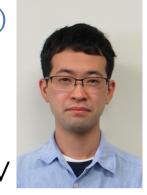
	ポート (例)	分類	光源	エネルギー	エンドステーション	特色・目的	国の戦略分野	ユーザーニーズ	分野 多様性	Nano Terasu の強み	新規性 開拓
グル	グループ2 高ニーズ共用BL										
1	12W	XAFS	多極 ウィグラー	3- 25 keV	(quick) XAFS	テンダーX線領域 全自動DX 自動試料交換	グリーンイノベーション マテリアル 量子技術 半導体・デジタル産業 バイオ・健康医療	0	©		
2	13W	X線回折	多極 ウィグラー	-3 25 keV- 2.1-20 keV	X線回折·散乱 2 (_{テンダーX線領域における共鳴} X線回折)27年度運用を	グリーンイノベーション マテリアル ^{ヨマセ体} 目指して 通	直設開	見始		
3	11W	イメー ジング	多極 ウィグラー	3-25 keV	X線CT(単色、準単色)、 位相差イメージング	階層イメージング テンダーX線領域における吸収 端コントラスト利用	グリーンイノベーション マテリアル 量子技術 半導体・デジタル産業 バイオ・健康医療	0	©		
4	12U	イメー ジング	APPLE-II アンジュレータ	250 -3000 eV	A: SXイメージング B: 共鳴軟X線散乱	軟X線コヒーレント回折イメージング、タイコグラフィ、 高分子材料・ポリマー小角散 乱、ホログラフィー、共鳴磁気 回折	グリーンイノベーション マテリアル 量子技術 半導体・デジタル産業 バイオ・健康医療	0	0	0	0
5	05W	X線分光	多極 ウィグラー	3- 13 keV	HAXPES	テンダーX線領域 全自動DX	グリーンイノベーション マテリアル 量子技術 半導体・デジタル産業 バイオ・健康医療	0	©		


増設共用ビームライン:X線回折ビームライン

QST

NanoTerasu

X線回折ビームライン


担当:山本航平(QST)

ビームライン仕様 (検討中)

設置場所:BL11W

光源:多極ウィグラー

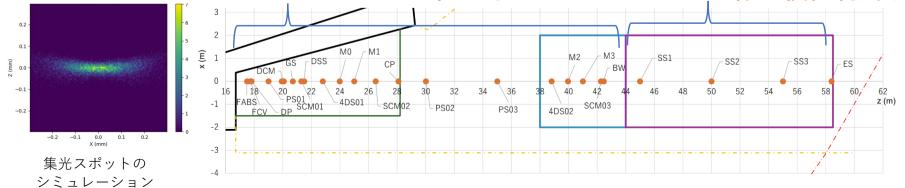
エネルギー範囲: 2.1 - 20 keV

G. Ciatto et al. J. Synchrotron Rad. (2019). 26, 1374

真空対応 TX回折装置

神津精機カタログ

Vibration icolation bellow,


O. Shih et al. J. Appl. Cryst. (2022). 55, 34

HX回折装置

小角散乱装置

低エネルギー・テンダーX線に 最適化された光学系設計

低エネルギー・テンダーX線を積極利用するES計画

NanoTerasu.

○2025年3月3日より3本の共用ビームラインで本格共用を開始した。

BLO2U:軟X線共鳴非弾性散乱(超高エネルギー分解能)

エンドステーションも含めて世界最高のエネルギー分解能を達成

BLO6U:角度分解光電子分光(微小集光)

目標値を上回るエネルギー分解能を達成。

エンドステーションのマイクロ集光ARPES装置も利用可能

BL13U:軟X線吸収分光(偏光可変)

広エネルギー帯域利用、移相器制御による任意偏光生成を達成

○4本目の共用ビームラインとしてウィグラー光源を用いたX線回折ビームライ

ンの増設が決定し、現在設計を開始している。(2027年度運用開始予定)

今後のさらなる高度化や増設に向けて利用ユーザーからのフィードバック、要望をお願いします。

立ち上げにご尽力頂いたQSTビームライングループメンバー、試験的共用ユーザーの方々、JASRIのビームライン担当の方々に深く感謝します。