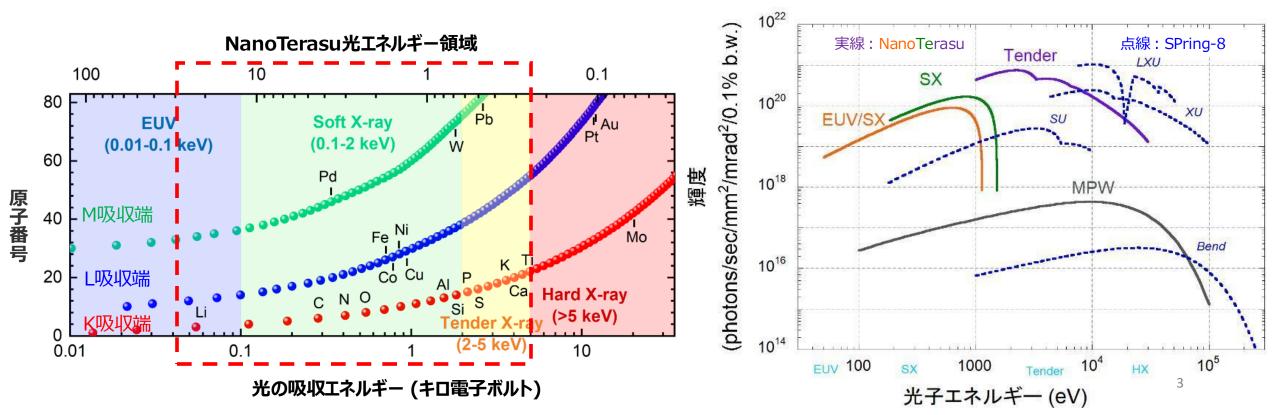
NanoTerasu光源の運転状況と展望

アウトライン

- 1. NanoTerasuの目的
- 2. NanoTerasu光源の特徴
- 3. NanoTerasuユーザー運転 2025年度の状況・予定
- 4. 蓄積電流400mAへ向けた取組
- 5. リモート実験へ向けた取組
- 6. まとめ



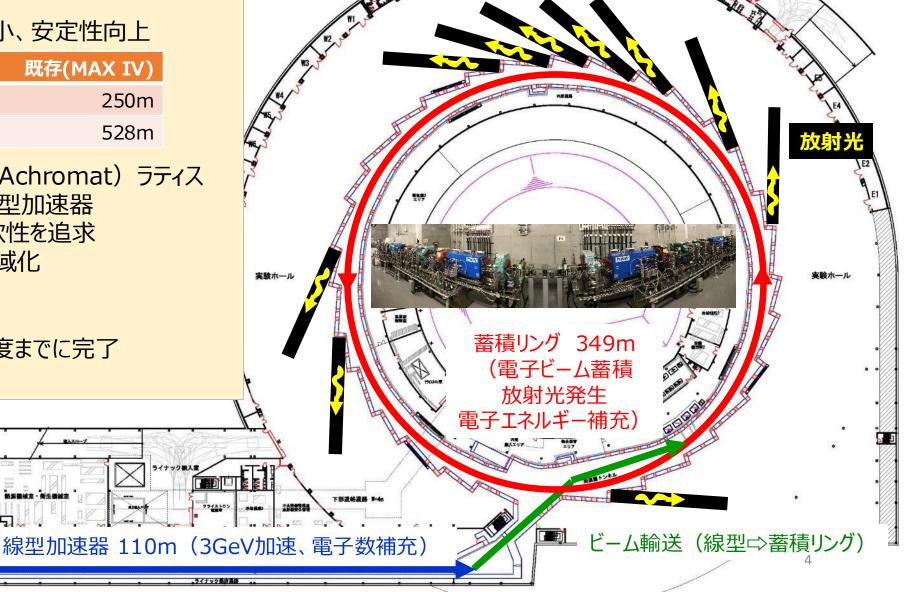
- ・ 従来比100倍明るい軟X線を生成し、ナノの世界を鮮明に可視化 ⇒生命、材料、エネルギー分野等でブレークスルー(人類社会に貢献)
- ・ SPring-8との協奏で国内の光科学プラットフォーム形成
- ・ 特定先端大型研究施設としてユーザーへ光供給

仕様値
3 GeV
1.14 nm.rad
400 mA
14/14

2. NanoTerasu光源の特徴

【NanoTerasu光源の特徴】

1. コンパクト:建設・運転経費縮小、安定性向上

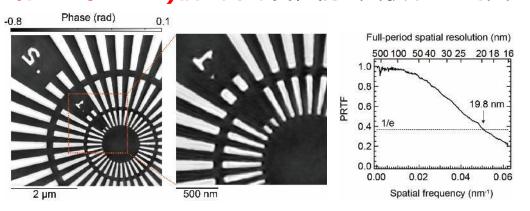

	NanoTerasu	既存(MAX IV)
線型加速器全長	110 m	250m
円型加速器周長	349 m	528m

- 2. 国内初のMBA (Multi Bend Achromat) ラティス
- 3. 日本独自のコンパクトCバンド線型加速器
- 4. 光源の高安定性・信頼性・柔軟性を追求
- 5. 国内初の実験ホール非管理区域化

【実績】(いずれも予定通り)

- 1. 整備・コミッショニングを2023年度までに完了
- 2. 2024.4.1に運転開始

2. 輝度性能


輝度: 単位時間・面積・立体角・エネルギー幅あたりの光量で空間分解能など光源性能を決める指標

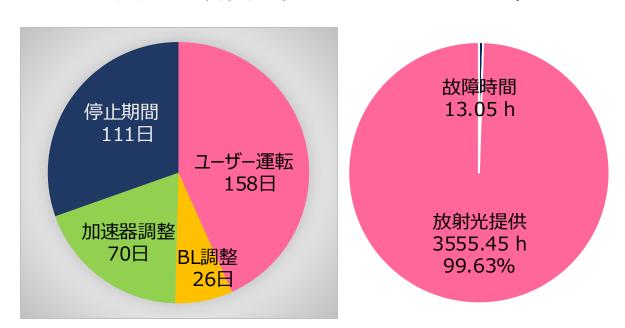
トンネル内電子ビームサイズモニター(3極ウィグラー) 3極ウィグラー ピンホール シンチレータ 電子ビームサイズ@160mA $\sigma_{\rm v}$ =11 μ m $\sigma_x = 84 \mu m$

- 電子ビームサイズからエミッタンスは設計値通り
- 輝度は国内既存施設の40倍(電流160mA)

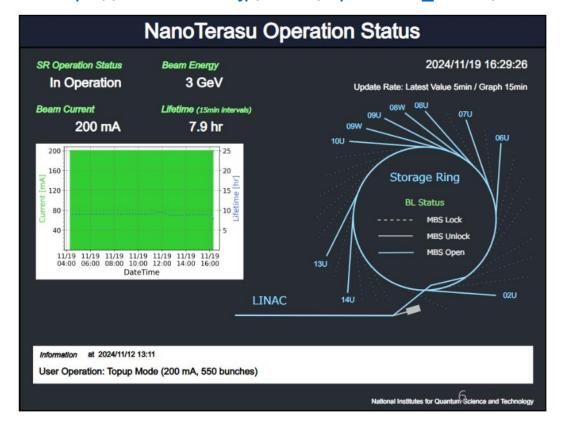
実験ホール BL10Uでの測定 2024.4月 東北大 高橋幸生教授

- テンダーX線領域のタイコグラフィーで<u>世界最高空間分解能</u> サブ20nm(Taテストチャート)、サブ50nm(実試料)。
- SPring-8解像度の2.5倍@3.5keV が得られ
 約40 (~2.5⁴)倍の高輝度性能を実験ホールで実証。

- N. Ishiguro et al., Applied Physics Express 17, 052006 (2024)
 - →他BLでも高輝度性能が予想され、2024.8月には BL02Uで世界最高エネルギー分解能RIXSを実現



2. 2024年度運転統計(安定性)

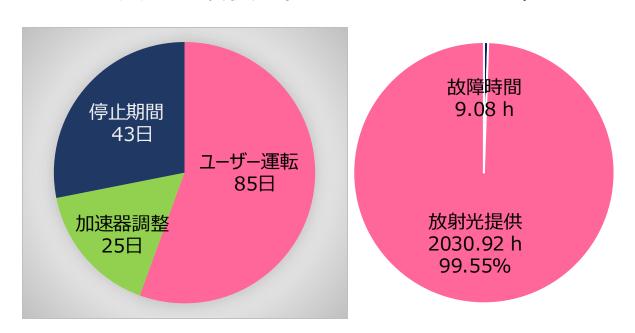

- ・ 2024.4.9から予定の100mAを上回る蓄積電流160mAで運用開始。2024.7.26から200mAに。
- ・ 放射光供給3568.5時間を光源稼働率99.6%、平均故障間隔(MTBF)323時間で実施
- ・ ユーザー運転中のFault(故障)による蓄積ビーム廃棄は延べ11回
- 国内既存施設の約50倍の輝度の軟 X 線放射光を安定供給

加速器運転状況(2024.4.1 - 2025.3.31)

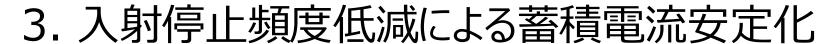
※ 他施設の光源稼働率、平均故障間隔(2023年)

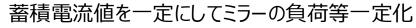
SPring-8:99.4%、403時間 ESRF-EBS:99.3%、107時間 https://nanoterasu.jp/users/operation_status/

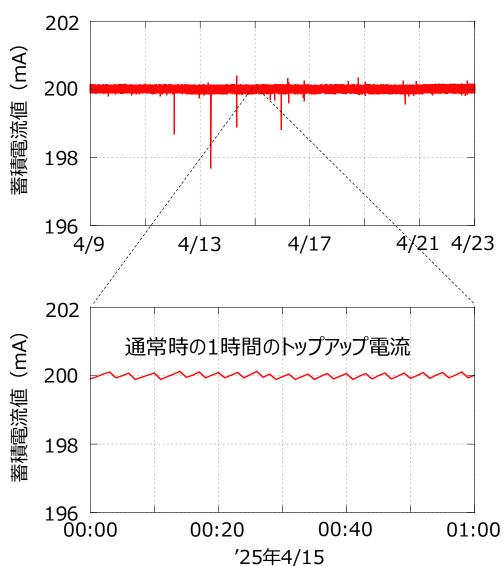
2025年									2026年			
4	5	6	7	8		9	10	11	12	1	2	3
4/1 4/23	5/11			8/7		9/23			12/17	1/19		3/14
				加速器運転		時間						
				放射光供給	時間	4500						
				加速器調整	時間	1500						
				合計		6000						
共用202	5A期(3/3·	-8/7)				共用	2025B期	9/30-3/	14)			
ビームライ	ン 応募	数 採	尺数	採択率		ビーム	ライン	応募数	採択数	採択率		
BL02U	25	10	(4)	40.0%		BL	02U	24	11	45.8%		
BL06U	26	12	(0)	46.2%		BL	06U	28	13	46.4%		
BL13U	24	16	(0)	66.7%		BL:	13U	26	18	69.2%		
合計	75	38	(4)	50.7%		台	計	78	42	53.8%		
5月メン	テナンス			設備保守点標施設停電(8 施設停電(8 法定インター[3末)				冬季	メンテナンス		春季メンテナ

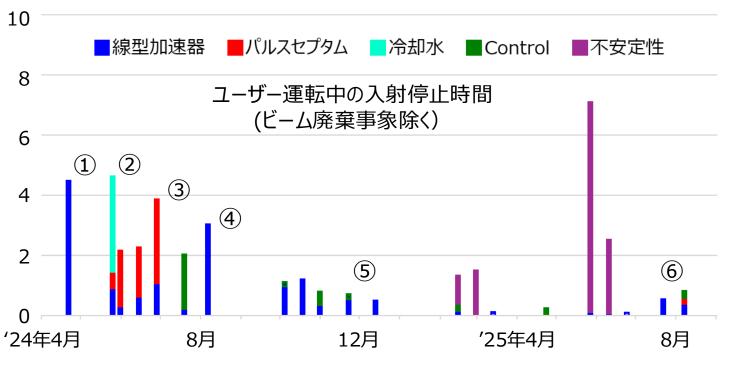


- ・ 2025年度の予定放射光供給時間は4512時間(188日)
- ・ 蓄積電流200mAで8/31までに放射光供給2040時間を光源稼働率99.6%、平均故障間隔(MTBF)290時間で実施
- ・ ユーザー運転中のFault(故障)による蓄積ビーム廃棄は延べ7回

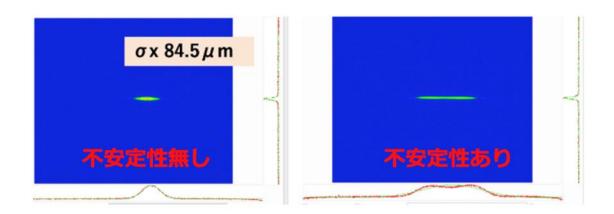

加速器運転状況(2025.4.1 - 2025.8.31)


2025年度ビーム廃棄原因	回数
SR空胴	3
真空異常	1
瞬低による補助電源動作停止	1
軌道補正磁石電源1/8通信異常	1
BL作業のためのITLK誤操作	1
計	7


2024年度ビーム廃棄原因	回数
SR空胴	6
サーキュレーター アーク誤発報	2
カレントストリップ電源異常復帰	1
軌道補正電源制御ユニット故障	1
BL作業のためのITLK誤操作	1
計	11

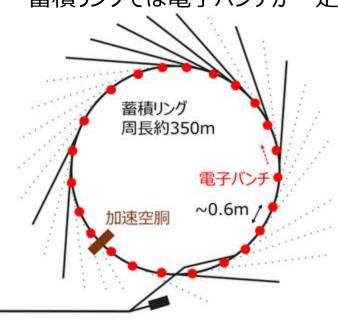


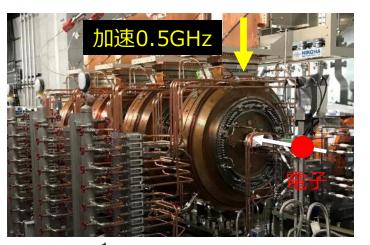
- ① Cバンドクライストロン1台出力低下のため交換
- ② 冷却水の安定化
- ③ パルスセプタム電源のPLC回路のノイズ問題の解決
- ④ 線型加速器を10Hz→1Hz運転に変更
- ⑤ Cバンド加速管電源1台復帰→他加速管の電圧減
- ⑥ 不安定性対策として縦BBF空胴稼働

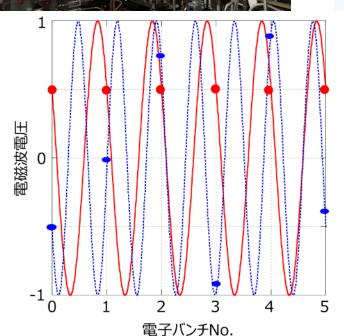

4. 蓄積電流400mAに向けて (課題)

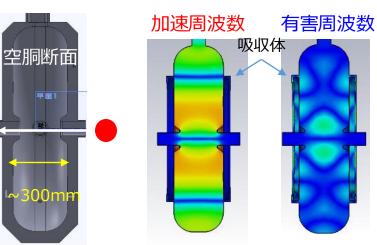
・ 予定を上回る蓄積電流運転を実現してきたが、R8年度400mA達成には大きな技術的課題を解決する必要あり 200mA以上では電子ビームエネルギー幅の3倍以上の拡大(輝度低下)が、トンネル内ビームサイズモニターで観測されていた

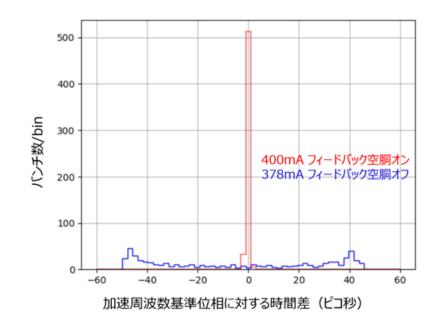
年度	R6	R7	R8	R9
共用ビームライン	試験共用 ■	本格共用 ■		\longrightarrow
蓄積電流 (予定)	100mA	200mA	400mA	
放射光供給時間 (予定)	3,500時間	4,500時間	5,000時間	
加速器調整時間 (予定)	2,500時間	1,500時間	1,000時間	


・ 2023年8月に観測されたビーム不安定性を、QST加速器Grも成長させる課題として取組んできたが未解決であった。

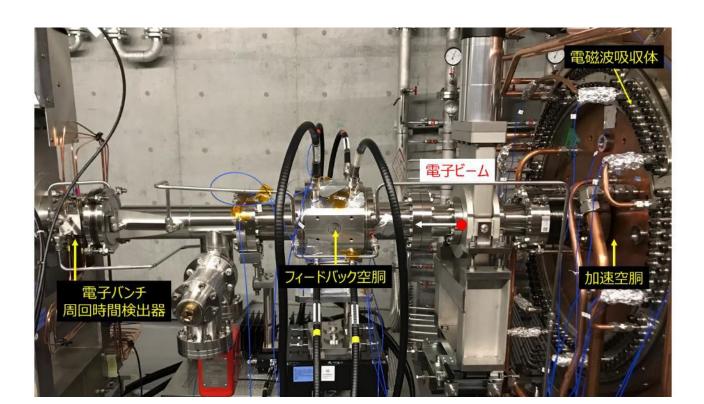

4. 不安定性の原因

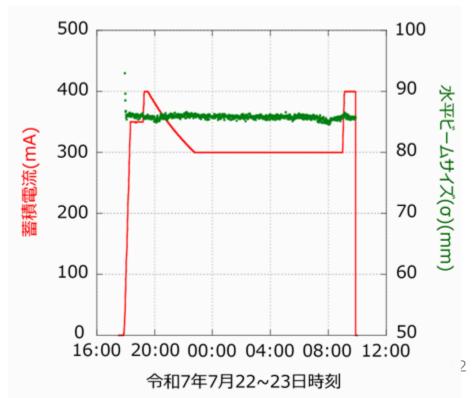



・ 蓄積リングでは電子バンチが一定の間隔を保ちながら、規則正しく周回し、放射光発生で失ったエネルギーを加速空胴で補充



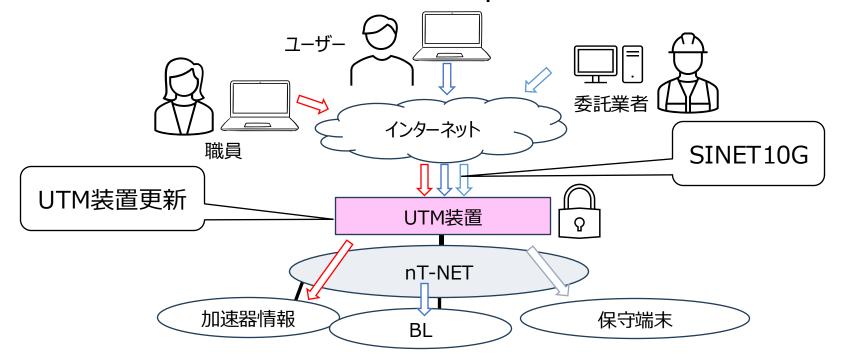
- ・ 空胴内には電子バンチによる様々 な周波数電磁波発生
- ・ 加速周波数以外吸収する TM020加速空胴を採用
- ・ 吸収しきれない周波数が存在し、 不安定性が200mA以上で発生




4. Bunch-by-bunch feedback(BBF)空胴

上島考太他「ナノテラスにおける縦方向ビーム不安定性抑制の状況」第22回日本加速器学会発表 2025.8.6

- ・ 電子バンチ間のエネルギー幅広がりを、電子バンチ周回時間変化(高エネルギーバンチほどリングを遠回り)として捉える検出器
- ・ 到着時間の早い電子バンチにエネルギーを与えて遅らせ、遅いバンチのエネルギーを減らして早めるフィードバック空胴
- ・ 2024年度に設計・製作、2025年5月に設置、7月22日の最初の試験でエネルギー広がり無しで400mA安定蓄積に成功
- ・ 2025年9月のユーザー運転から徐々に運転電流値を上げる予定。 放射光強度向上に伴うスループット向上が見込まれる



5. リモート実験

- ・今年度中のリモート実験の実現を目指し、NanoTerasuネットワーク (nT-NET) リモートアクセス環境整備計画中
- ・情報セキュリティ向上のため統合脅威管理(UTM)装置更新
- ・外部アクセス回線のSINET接続10Gbps化

6. まとめ

【1. 軟X・テンダーX線領域で国内既存施設の100倍の高輝度性能】 約50倍の高輝度軟 X 線を供給中。BBF空胴導入により電流倍増(定格400mA)に目処。 高エネルギー分解能RIXSの実験効率倍増など、R6年度比、スループット倍増が見込まれる。

【2. ユーザー実験に不可欠な光源の安定性と信頼性】 光源稼働率、MTBF、蓄積電流安定度は極めて良好。 実験中断やミラーの発熱等、利用実験の妨げとなる事象を極力排除。

【3. スケジュールと利便性】 2024年度に引き続き2025年度もユーザー運転はスケジュール通り進捗。 リモート実験の準備も進行中。