SPring-8近況サマリー

- 近況 国内外の状況、SPring-8
- 現状

加速器の技術開発 ビームライン基幹部の高性能化 情報技術に関する状況 利用制度の改正

- ・再編、整備のコンセプト
- ビームライン再編

直近で整備完了:

BL39XU ←河村さんからの報告

整備進行中:

BL40XU ←関口さんの報告 BL15XU←玉作さんの報告

BL再編の効果例: BL04B2

←山田さんからの報告

SPring-8の近況

と次のセッションの 頭出しとしての

BL再編

の概要のご報告

坂田修身 (JASRI)

第7回 特定放射光施設BLsアップグレード検討ワークショップ 250301 @秋葉原

近況

SPring-8

加速器・インフラの老朽化が進行 液体窒素循環システム SPring-8-II 整備(事業実施期間:令和6年度(2024)~10年度(2028)) 2024年11月2024年度補正予算として170億円が措置 (2028年度までの5年マル債総額499億円が閣議決定) (SPring-8-IIについては矢橋氏の報告) ビームラインのアップグレードを2018年より実施中

• 国内外の情勢

2024.4~ 3GeV高輝度放射光施設ナノテラス(共用3BL、専用7BL)が稼働
2025.3.3~ 共用開始@ナノテラス
世界の大型放射光施設は第4世代へ (2020年代)
欧州ESRF-EBS (2020.末~),米国APS-U (2024,6~),ドイツPETRA IV (UPG実施中),中国HEPS (建設中),韓国4GSR (建設中),SLS2.0 (UPG実施中),Diamond-II (UPG実施中)

状況

SPring-8/SACLA中間評価 2024年6月~12月 5年毎を目途に実施。前回指摘事項に対するフォローアップなどの議論 2024年12月26日付で中間評価報告書を文科省HPに公開

次世代光源SPring-8-IIに向けた加速器設計・開発

"マルチベンド・ラティス"と呼ばれる次世代加速器構造と6GeV化&永久磁石等により「約100倍明るい光を約半分の電力で実現」

	SPring-8	SPring-8-II
電子エネルギー (GeV)	8	6
蓄積電流 (mA)	100	200

新型 真空封止アンジュレータ IVU-II

電子 ビームサイズ (発光点)

 $\sigma_x = 316 \mu m$ $\sigma_y = 5 \mu m$

 $\sigma_{\rm x} = 30 \ \mu {\rm m}$ $\sigma_{\rm v} = 5 \ \mu {\rm m}$

プロトタイプ 設計・製作 永久磁石型特殊磁石"LGB" 電磁石型特殊磁石 "BQ combined" 狭口径超高真空システム etc.

- ✓ お互いの装置を1mmのクリアランスで 3次元CAD上に設計 → 2024度製作・実証
- √ 安定な運転に向けた詳細なビーム動力学数値計算も遂行

超高安定X線分光光学系の開発と実用化

高熱負荷対応Double Channel Cut Monochromator (DCCM) のビーム評価

- →光学系と電子ビームとの相関*
- →40XU改修にてBL光学系として採用*
- フロントエンドスリットの高精度化
 - →光軸中心を捉え、軌道起因の振動成分抑制

超高エネルギーX線光学系の開発と実用化

100 keV多層膜ミラーの大型化(1.67倍)と冷却機構の改良

- →フォトン数及びビームサイズ1.7倍
- →15XU改修時に採用
- 130, 200, 300, 543keVまでのビーム評価試験

SPring-8-IIに向けたBL基幹部の更新計画

SPring-8-II計画に基づき、光軸変更に伴うBL基幹部の更新計画の検討開始* LN2供給設備の整備(環状配管と4基のCEの接続25年3月に完成)

*ビームライン光学技術推進室と理研と共同で SRI, IWXM, JSR等にて報告

(詳細の連絡先は初井さん、城地さん)

ビームラインネットワークの高度化

14ビームラインへ導入

データセンターへの広帯域接続に向けて、ビームラインネットワークを更新

ビームライン制御システムの高度化 11ビームラインの光学ハッチへの導入

スマート実験制御の実現に向けて、ビームライン制御・データ収集・オンライン解析の基盤 システムであるBL-774を導入

検出器システムの高度化・利用支援

- 高感度で高速撮像が可能なX線画像検出器CITIUSの開発(X線回折・散乱用)
- 間接型X線画像検出器DIFRASの開発(透過X線用)
- 上記検出器および市販検出器の利用支援

SPring-8データセンター運用

- CITIUSやDIFRAS等で取得される大量データを高速転送・解析する技術の開発
- データセンター利用が不慣れなユーザー向けのユーザーインターフェース (OpenOnDemand)の導入
- 所外ユーザーとのデータ共有サービス(SPring-8 Data Flow Service)の開発
- 上記ツールの利用支援

利用制度 2024B期(下期)の改正

- ・専用BLおよび理研BLの共用供出対象拡大 BL16XU(分析科学I), BL24XU(兵庫県ID), BL32B2(施設開発BM)
- 年6回募集対象BLの変更
 01B1, 02B1, 02B2, 09XU, 13XU, 14B2, 16XU, 19B2, 24XU, 46XU, 47XU
- SACLA成果専有課題の応募要件拡充 日本国内に法人格を有する学術研究機関に所属する方も利用可能

利用制度 2025A期(上期)の改正

- ・ 利用料の位置づけの再定義および料金体系の改正
- ・ 成果準公開利用 (プロモーション利用試行版)
- 消耗品費実費負担制度の改正

BL15XU(理研物質科学Ⅲビームライン)の共用供出について

- 1. 測定手法 イメージング (ラミノグラフィ)
- 2. 供出割合 [・]総ビームタイムの20% (2025A期第Ⅱ期から24シフト予定)
- 3. 対象分野 : 産業利用分野

「民間企業」、「産業界に準ずる機関」に所属する者が実験責任者or共同実験者の利用

4. 審査運用 年6回募集とし、産業利用分科会で審査を行う

ポートフォリオの復習と再編のコンセプト

ポートフィリオ(2022 昨年のシンポジウムの矢橋氏の報告を一部追記)

カテゴリー	特徴	評価軸	割合
(A)Measurement (Production)	ルーチン計測DX/オートメーションハイスループット	・ 成果の広がり・ 潜在ユーザーへの訴求・ 利便性の向上	~60%
(B) Experiment (Specific)	テイラーメイド実験戦略的な活用	Visibility/戦略性国際的な評価	~30%
(C) Development	• 新技術 (X線光学系、検 出器、手法)	世界一かどうか(A) (B) への波及	~10%

再編のコンセプト

- ・ 硬X線領域の重点化
- オペランド構造解析のニーズへの対応
- ・ビームライン・計測制御系を共通化
- 産学連携のさらなる促進
- 重複装置の集約や配置最適化

ビームライン(BL)再編

- 共用ビームラインの再編·高度化 (15本+α) 青字は実施中
 - PX: 45XU
 - NRS/IXS: 35XU
 - HAXPES, XAS: 09XU,46XU, 39XU
 - Imaging: 20B2, 28B2
 - XRD、XRS: 13XU, 04B2, 08W, 15XU (40XU, 04B1, 02B1)
 - SAXS: 40XU
 - Open hutch: 47XU (EH2)
 - オートメーション: 02B2, 14B2, 40B2
- 理研BLの拡充・機能強化 (2本)
 - 専用BLからの転換: 16XU, 16B2

改修停止

機器調整

改修後利用

ASRI 9 / 17

					(23B)	(24A)	(24B)	(25A)	(25B)
					###19	2 4 5 6 7 9 0	0 0 0 1 2 2	1 5 6 7	20###123
発光分	光ES	整備		39XU	.713	共用			
SAXS	専用化	 		40XU			大規模改修		共用
単結晶	XRD			40XU→05XU			05XUへ移	設	共用
高エネ	ルギ	-R&D		05XU	機器移設	一部15XU	^		
高エネ	ルギ	一・回折	散乱	15XU	ハッチ更新	DMM一部共用	DCM	共用	
ネルギー・回折		บวมบ 15XU	建研 NIMS	理研 理研	ukeviviicrobeam	大規模改修	阪命移取 ID・ハッチ更新	ー _{部13} 人Uへ DMM 一部共用	DC <mark>M</mark> 共用
用BI			改修前	利用 改修停止 機器	周整 改修後利用				

- SAXS専用化@BL40XU大規模改修

高度化された単結晶XRD:BL40XU、理研BL05XU。

理研BL:

- 高E回折散乱@BL15XU
- 高E R&D@BL05XU 一部15XUへ

2024年7月末~実験ハッチ建設中 2024年10月~コミッショニング 2025年10月~ 共用開始予定

多層膜ミラー使用:100 keV-ピンクビームの利用

BL39XU X線吸収・発光分光BL 大規模改修後の調整~利用再開

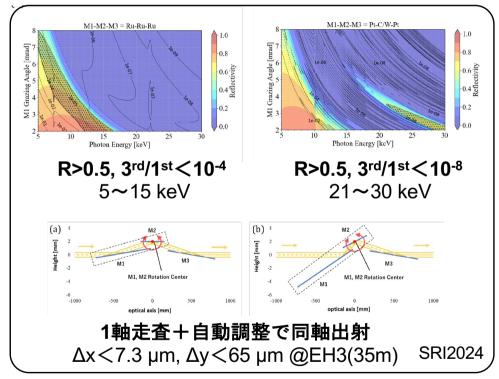
スケジュール

24年1月~5月まで光学調整, 5月から実験ST調整開始, 24Aから利用開始

初めて実用化した光学系

- 同軸高次光抑制ミラー ,
- ・20keV用Wolter集光ミラー

BL15XU 明るい100keV BL


大規模改修・調整~利用準備 スケジュール

~24年9月までハッチ建設,機器設置 9~10月 光学調整

10月~ 実験ST調整開始, 利用準備

光学系:05XU開発品を水平展開

100keV多層膜の分光器・集光ミラー

BL40XU小角散乱BLとして大規模改修に着手

スケジュール

24年12月~25年3月までOH/EHの全面改修, ID更新 光学系: ピンクと分光ビームの切替可能

大規模改修・BL光学調整作業は ビームライン光学技術推進室と理研と共同 X線発光分光@ BL39XU 新EH2 (2024.7-) XES · HERFD-XAFS · XRS

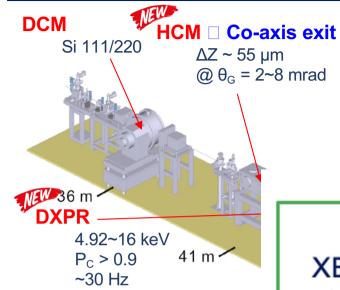
Low (high) temperature Operando/in-situ meas.

-->

- ・高エネルギー分解能な測定
- 反応現象の微小変化の観測
- ・微量元素などの電子状態の研究

高エネルギーXRD@BL04B2ハイスループットPDF装置

2023.10— 100試料/日以上、113 keV、70-1073K

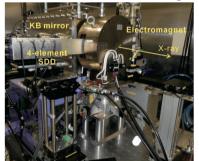

BL39XU: X線吸収·発光分光BL

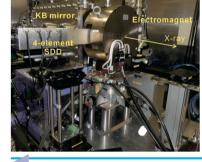
Commissioning: January 2024~ JASRI

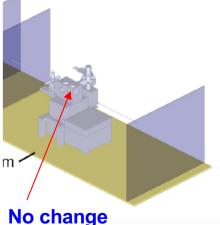
12 / 17

共用利用:

July 2024~

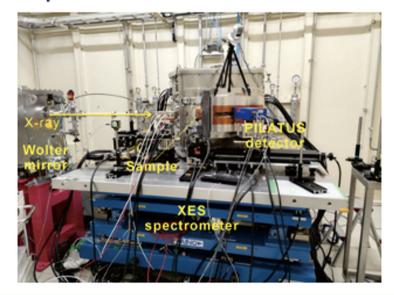

HCM の導入 □ ナノ分光イメージングの強化


- DXPR の導入□ 直線・円・楕円偏光の自由度の提供
- KB & Wolterミラーの導入□ 分光計測の高効率化
- EH2 の新設 □ 高ニーズ & アクティビティXES/HERFD の利便性向上


EH2-Wolter
As designed

EH3: X線ナノ分光

YAES • XMCD, XRF, Imaging anetic field '3D-XAFS · XMCD imaging

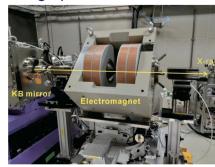


× 107 (H) nm @ 12 keV hotons/s

EH2: X線発光分光

XES • HERFD-XAFS • XRS

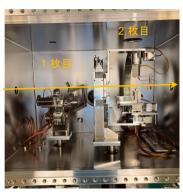
- ✓ Low (high) temperature
- Operando/in-situ meas.

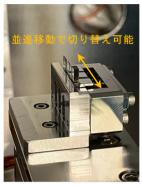


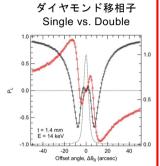
EH1-KB As designe

1 (V) × 10 (H) µm @ 4 1×10^{13} photons/s @ Defocusing: > □30 μm

EH1: 複合極限環境下X線分

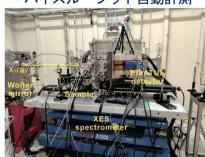

XAFS · XMCD + XRD High magnetic field High pressure

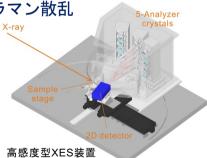



光学ハッチ(OH)、各実験ハッチ(EH)

OH: X線移相子

利用可能エネルギー: 4.92 ~ 23 keV 2枚移相子 □ 直線偏光面の自由度 最大 6 枚の結晶を真空破断することなく交換可能





New EH2: X線発光分光

XES・HERFD-XAFS・X線ラマン散乱 蛍光X線: 4.4~27 keV 低温 XES・HERFD-XAFS 検討中:

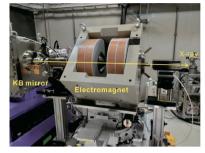
- 高温測定
- in-situ/operando 測定
- ・タワー切替
- ハイスループット自動計測

同次及至入EO表 国

3.0 (a) CeO₂ CeC₃ edge (covernment) (co

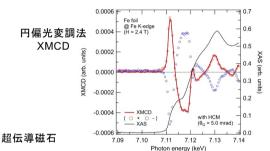
EH1: 複合極限環境下X線分光

XAFS · XMCD


入射X線: 4.92~23 keV

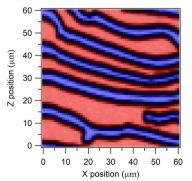
可変偏光

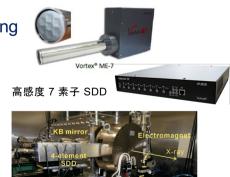
強磁場・低温・高圧


検討中:

• 高圧 XRD @ 30 keV

電磁石

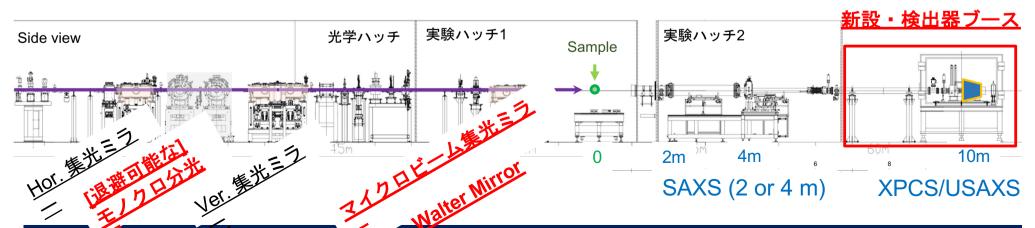



EH3: X線ナノ分光

ナノXAFS・XMCD 走査型 XRF (< 16 keV)

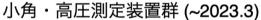
2D/3D-XAFS · XMCD imaging

GdFeCo膜のXMCDイメージング (60 × 60 µm, 1 µm step (15分程度))

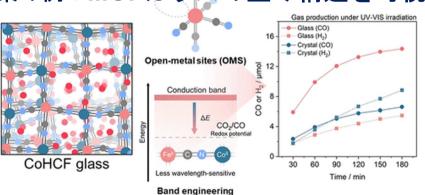


2024年12月より工事開始、**2025B期**からの利用再開の予定。 改修期間はBL05XU等でユーザーの受け入れ

	~2024年12月	2024年12月~2025年09月	2025年10月~2027 2028	SPring-8-II
EH1	μビーム/時間分解 SAXS/WAXS	SAXS専用 BLへ改修 ダウンタイム	μビームSWAXS 時間分解SWAXS	高時分解SWAXS 空間分解SWAXS
EH2	単結晶構造解析	ITインフラ整備他	XPCS	SWAXS-CT 高時分解XPCS/USAXS


- SPring-8-II 対応の標準IDへ入れ替え
- 準単色/単色の切り替え利用 (8-15 keV +α)
- 検出器ブース新設し、カメラ長 10 mを確保
- マイクロビーム集光(ウォルターミラー)
- 積分型X線検出器CITIUSを段階的に導入

BL04B2のアップグレード



装置利用率 2023B: 28%, 2024A: 32%

2024B: 38%, 2025A 65% (予定)

- ・最大100倍の高速化
- 容易な温度制御 (高温/低温窒素吹き付け)
- サンプルチェンジャー (最大50サンプル搭載可能)

成果の例:MOFガラスの歪み構造を可視化

S,Kosasang et al., J. Am. Chem. Soc. 2024, 146, 26, 17793–17800.

BL04B2のアップグレードの効果

 $[\sim 2023A]$

1課題あたりの平均配分

シフト数:8.39シフト

100.0% [2023B~]

1課題あたりの平均配分

シフト数:6.95シフト

⇒1.44シフト(約18%)減

採択課題数の増加 (採択率の改善)

シフト数

■ 申請 ■ 採択 ■ 採択率

	2020A	2021A	2021B	2022A	2022B	2023A	2023B	2024A	2024B (暫定)
1課題あたりの 平均配分シフト数	7.56	8.76	8.96	8.31	8.33	8.40	7.26	6.72	6.88

終わりに

近況と現状の報告

- **近況** 国内外の状況、SPring-8
- 現状

加速器の技術開発 ビームライン基幹部の高性能化 情報技術に関する状況 利用制度の改正

- ・再編、整備のコンセプト
- ビームライン再編

BL再編の効果例: BL04B2

引き続き、詳細

SP8 / BL04B2	JASRI 山田大貴(5分) /東京大学・脇原徹(15分)				
SP8 / BL39XU	JASRI 河村直己(5分) / 大阪公立大学・三村功次郎(15分)				
SP8 / BL40XU	JASRI関ロ博史 今年度の状況(15分)				