XAFSによる廃棄物解析

文化財/スペクトロスコピー合同研究会 東京文化財研究所 セミナー室

2012年3月14日 (水)

京都大学大学院工学研究科 都市環境工学専攻 教授 高岡昌輝

本日の内容

□ 廃棄物·循環資源問題

- □ 廃棄物・循環資源問題へのXAFS利用
 - □ なぜ、XAFSが必要か?
 - □ ダイオキシン類生成プロセスの解明
 - □ 下水汚泥中ヒ素の挙動

- n 一般廃棄物:4514万ト ン@H20年度
- n 焼却率:79.2%(3574 万トン)
- □ 焼却残渣:457万トン
- n 産業廃棄物:4億1900 万トン@H19年度
- ∩ 燃えがら:203万トン
- n ばいじん:1696万トン

元素	単位	焼却灰	焼却飛灰	溶融飛灰
0	wt%	47	34	22
Ca	wt%	21	22	11
CI	wt%	0.95	13	28
K	wt%	0.76	5.6	11
Si	wt%	9.8	4.6	1.0
Na	wt%	1.3	3.5	11
Al	wt%	4.7	2.7	0.22
Fe	wt%	6.8	1.9	0.17
Ti	wt%	1.3	1.8	0.025
Zn	wt%	0.34	1.6	5.8
Mg	wt%	1.4	1.5	0.14
Р	wt%	1.1	0.51	0.61
Pb	wt%	0.11	0.24	1.4
Cu	wt%	0.38	0.12	0.14
Mn	mg/kg	980	790	110
Cr	mg/kg	420	260	390
Cd	mg/kg	16	180	330
Ag	mg/kg	21	61	70
Pd	mg/kg	0.131	0.097	0.005
Au	mg/kg	1.2	0.57	0.75
Pt	mg/kg	0.077	0.080	0.020

下水汚泥中ヒ素の挙動

下水汚泥あるいは焼却灰中 有害金属問題

下水汚泥は産業廃棄物で最大

汚泥には有害金属が含有

汚泥の農業利用(土壌還元)

●土壌中の重金属濃度増加

- ●複合汚染
- ●作物種間差
- ●重金属形態

焼却灰の建設資材利用

リサイクルの基準を合致する必要あり

●溶出傾向は存在状態に依存する

●処理プロセス内の挙動

汚泥が次なるリサイクルがなされる場合、 含有有害重金属に対する安全性をどう確保するか?

日本の土壌溶出基準

	Unit	Recycle Material	Landfill
Cr(VI)	mg/L	0.05	1.5
As	mg/L	0.01	0.3
Se	mg/L	0.01	0.3

灰・汚泥の組成

Element	Unit (dry basis)	Ash A	Ash B	Ash C	Ash D	Ash E	Primary sludge F	Excess sludge F
0	%	49	43	47	29	45	-	-
Si	%	9.9	10	13	11	8.3	-	-
Al	%	6.6	6.5	8.4	5.2	5.6	-	-
Ca	%	5.4	6.2	3.7	29	9.2	1.2	0.8
Fe	%	4.6	11	9.7	6.5	5.3	0.4	0.4
Р	%	13	12	7.0	3.7	10	-	-
К	%	1.9	3.8	3.7	0.94	1.3	-	-
Na	%	1.1	0.62	1.3	0.27	1.3	-	-
Mg	%	3.4	2.3	1.7	1.2	1.6	-	-
Ti	%	0.50	0.51	0.67	0.29	2.0	-	-
S	%	0.29	0.40	0.22	1.3	0.49	0.74	0.70
Zn	%	0.12	1.1	0.14	0.13	1.2	0.32	0.32
Cu	%	0.25	0.29	0.25	0.060	1.1	0.32	0.32
Cr	mg/kg	140	190	1600	370	8500	1300	1300
As	mg/kg	23	18	23	28	21	<5	<5
Se	mg/kg	3.5	2.1	5.8	5.0	8.5	<5	<5

汚泥中のヒ素の状態

	嫌気	乾燥
PS	As(III)	As(V)とAs(III)
	(ORP=-230mV)	の混合
ES	As(III)	As(III)
	(ORP=-307mV)	

 嫌気状態下でのヒ素のピークは、3
価の位置で観察された。
初枕汚泥では、乾燥することにより、 一部が3価から5価へ変化した。
乾燥汚泥を焼却することにより、完 全に5価に変化した。

プロセスによる違いが現れる。

ご清聴ありがとうございました。

ご興味のある方は

takaoka.masaki.4w@kyoto-u.ac.jp