BL24XU Hyogo ID

1. Introduction

BL24XU is known as the Hyogo ID beamline. It is a contract beamline designed by Hyogo prefecture for industrial applications. BL24XU is a branched beamline employing a figure-8 undulator light source, а diamond (220)beam-splitting monochromator for branched line A, and a Si (111) double-crystal monochromator (DCM) for mainstream B. The end-station is specialized for high-resolution structural characterization by microbeams and imaging (Table 1).

Recently, we have begun actively promoting the use of data-driven science and engineering such as applying machine learning to analysis utilizing

_ _ _ _ _

synchrotron radiation. The informatics approach has the potential to rapidly derive the relationship among the structure, physical properties, and manufacturing processes by analyzing a number of specimens under different conditions. In addition, it may extract useful features from massive amounts of data, such as two-dimensional spectrum mappings.

Efforts continue in the development of new measurement methods. Bright-field X-ray topography, which was developed in recent years, is now available to industrial users. Here, we report its developments.

Measurement techniques	Structural information	Spatial resolution
Projection / imaging microscope / coherent diffraction CT	2D/3D image Field of view: 1 μm–1 mm Absorption, refraction contrast (projection / imaging microscope) Absorption, phase contrast (coherent diffraction)	10 nm–0.33 μm
Microbeam SAXS / WAXD / XRF	Periodic / aggregation structures from angstrom-scale to several hundred nm in size Distribution of crystal grains Elemental mapping	0.5–5 μm
Bonse–Hart USAXS	Periodic / aggregation structures 16 nm-6.5 µm in size	Bulk
Highly parallel microfocus diffraction, bright-field topography	Local strain, dislocation	0.5–30 μm (diffraction), 0.65 μm (topography)
Near-ambient-pressure HAXPES	Chemical state	30 µm

Table 1. Specifications of the measurem	nent techniques in BL24XU.
---	----------------------------

~ -

2. Bright-field X-ray topography under the super-Borrmann condition

X-ray topography exerting the super-Borrmann effect has been performed to display the dislocation images using synchrotron radiation with a highspeed and high-resolution CMOS camera ^[1]. To obtain X-ray topographs with minimized image deformation, we employed forward-transmitted (but refracted) X-rays that satisfied the Bragg conditions for the two {111} adjacent planes lying symmetrically with respect to the {100} plane of symmetry, as demonstrated in Fig. 1.

Fig. 1. Incident X-rays K_0 and reflected X-rays K_{111} and $K_{\overline{1}11}$ simultaneously satisfying Bragg conditions for 111 and $\overline{1}11$ reflections, respectively. Sample rotations around [001] and [100] are performed, respectively, to select a pair of {111} planes and for Bragg condition adjustment to satisfy the individual three-beam diffraction condition.

The X-ray energy in the present experimental case of using synchrotron radiation was E =10 keV and the Ge slab thickness was t =0.05 cm with the (100) entrance surface. Before the experiment, the minimum attenuation coefficients for σ and π polarizations of the incident X-rays in the three-beam case, A_{\min}^{σ} and A_{\min}^{π} respectively, are calculated. Results demonstrate that A_{\min}^{σ} and A_{\min}^{π} are almost 20 times larger than those in the two-beam (usual Borrmann effect) case. Figure 2 shows fluorescent spots of (a) the directly transmitted X-ray beam denoted as "0", (b) the direct beam and the 111reflected beam, and (c) the direct beam, the 111reflected beam, and the $\overline{1}11$ -reflected beam. It can be easily noted that the triple fluorescent spots in Fig. 2(c) are much brighter than those in Fig. 2(b), which indicates the super-Borrmann effect.

Fig. 2. Reflection spots on a fluorescent sheet. (a) Directly transmitted X-ray beam denoted as "0", (b) direct beam and 111-reflected beam (suggesting usual Borrmann case) and (c) direct beam and 111- and 111-reflected beams (suggesting the super-Borrmann case).

Fig. 3. X-ray topograph of a germanium slab taken by simultaneous 111 and $\overline{1}11$ reflections without deformation correction. Four images are pasted together to obtain a wide-area topograph.

Figure 3 shows one of the topographs taken under the super-Borrmann conditions shown in Fig. 2(c) using a pair of 111 and $\overline{1}11$ reflections without deformation correction. Considering the Xray source is approximately 1.2×1.2 mm² in size, four topographic images are pasted together to achieve a wide-area topograph.

Forward-transmitted X-rays using synchrotron radiation were found to be effective for topographs not only under the usual multiple diffraction conditions but also under the super-Borrmann conditions.

Regarding the operation of the experimental stations for user access, we would like to express our gratitude for the cooperation of JASRI.

Tsusaka Yoshiyuki^{*1}, Takayama Yuki^{*1}, Yoshimura Masashi^{*2}, Kagoshima Yasushi^{*1}, Yokoyama Kazushi^{*2}, and Matsui Junji^{*2}

^{*1}Graduate School of Science, University of Hyogo

*2Synchrotron Radiation Research Center, Hyogo Science and Technology Association

Reference:

 Matsui, J. Takatsu, K. & Tsusaka, Y. (2022). J. Synchrotron Rad. 29, 1251–1257