Development of the Single-Bunch Instabilities Simulation Code SISR

Takeshi NAKAMURA

SPring-8, Kamigori, Ako-gun, Hyogo 678-12, Japan

1 Introduction

The simulation code for single-bunch instabilities, SISR (Single-Bunch Instabilities in Storage Rings) was developed. SISR can treat not only localized impedance like cavities but also distributed broad-band impedance along rings such as small discontinuities of a beam pipe.

To incorporate distributed impedance, we use complex amplitude and an averaging method.

2 Basic Equations

The transverse position of i-th electron motion under the force F_i is represented with n_i as

$$n_i = \frac{x_i}{\beta}$$

$$\theta = \frac{1}{\gamma v_i} \int_{s_i}^{s} d\gamma'$$

$$\frac{d^2 n_i}{d\theta^2} + (\frac{v_{0i}}{\beta} + \Delta v_i)^2 n_i = \frac{v_{0i}^2}{\beta} \frac{F_i}{E}$$

Using n_i instead of (x_i, x'_i), we just need to know the values of β and α at each element and betatron phase difference between elements, which simplifies the discussion.

The force F_i comes from wake field is

$$F_i = e \sum_{j=1}^{N_p} q_j x_j \frac{d}{ds} W(y_j - y_i, s)$$

$$= e \beta^2 \sum_{j=1}^{N_p} q_j n_j \frac{d}{ds} W(y_j - y_i, s)$$

$$\eta_i = \text{Re}[a_i(\theta) e^{i\varphi_i}] = \frac{1}{2} \left[a_i(\theta) e^{i\varphi_i} + c.c. \right]$$

$$F_i = \text{Re}[f(\theta) e^{i\varphi}] = \frac{1}{2} \left[f(\theta) e^{i\varphi} + c.c. \right]$$

$$f(\theta) = e \beta^2 \sum_{j=1}^{N_p} q_j a_j \frac{d}{ds} W(y_j - y_i, s)$$

Assuming that

$$\left| \frac{d^2 a_i}{d\theta^2} \right| \ll \left| 2 \frac{\Delta v}{v_i} \frac{da_i}{d\theta} \right|$$

which means that the typical varying time of a_i is much smaller than the time λ_0/c, equation

$$\frac{da_i}{d\theta} = i \Delta v a_i + \frac{v_{0i}}{2 E_0} \int_{\theta - \frac{\pi}{2 v_{0i}}}^{\theta + \frac{\pi}{2 v_{0i}}} \beta^3 \left(\frac{d\theta'}{v_0^2} \right)$$

$$+ \frac{v_{0i}}{2 E_0} \int_{\theta - \frac{\pi}{2 v_{0i}}}^{\theta + \frac{\pi}{2 v_{0i}}} \beta^3 f_i e^{-2 i \gamma_{0i} \theta'} \left(\frac{d\theta'}{v_0^2} \right)$$

can be obtained.

The third term of the right hand side can be neglected because $\beta^3 f_i$ does not have the Fourier component of the frequency $2v_{0i}$.

Hence the equation

$$\frac{da_i}{d\theta} = i \Delta v a_i + \frac{v_{0i}}{2 E_0} \int_{\theta - \frac{\pi}{2 v_{0i}}}^{\theta + \frac{\pi}{2 v_{0i}}} \beta^3 f_i \left(\frac{d\theta'}{v_0^2} \right)$$

is used to simulate distributed impedance.

The integral in this equation is

$$\int_{\theta - \frac{\pi}{2 v_{0i}}}^{\theta + \frac{\pi}{2 v_{0i}}} \beta^3 f_i \left(\frac{d\theta'}{v_0^2} \right) = \int_{\frac{-\pi}{v_{0i}}}^{\frac{\pi}{v_{0i}}} \beta^3 f_i \frac{ds'}{2 \pi}$$

$$= \frac{1}{2 \pi} \int_{-\frac{\pi}{v_{0i}}}^{\frac{\pi}{v_{0i}}} \beta^3 \left(\frac{d\theta'}{v_0^2} \right) ds' \lambda_{0i} \frac{1}{C}$$

From the approximation (7), we have

$$\int_{-\frac{\pi}{v_{0i}}}^{\frac{\pi}{v_{0i}}} \beta^3 \left(\frac{d\theta'}{v_0^2} \right) ds' = \sum_{k} \beta_k \frac{1}{2} \int f_k ds'$$

$$= e \sum_{k} \beta_k \sum_{j \neq k} q_j a_j W_{jk}(z_j - z_i)$$

and, from the definition of λ_{0i}, $\lambda_{0i} \frac{1}{C} = \frac{1}{v_{0i}}$.

The final form of the equation of transverse motion of particles are

$$\frac{da_i}{d\theta} = i \Delta v a_i$$

$$+ \frac{e}{4i \pi E_0} \sum_{j=1}^{N_p} q_j a_j \sum_{k=1}^{N_p} \frac{\beta_k}{C} W_{jk}(z_j - z_i)$$

In the following, the symbol with superscript * is the value after and with - is the value before the passage of each element.

3 Difference Equations

3-1 Lattice with Distributed Broad-Band Impedance

The difference equations which used to simulate the electron motion in the lattice are

$$\Delta E_{i}^* = \Delta E_{i} - U_0 \frac{\Delta T}{T_0} \left(1 + \frac{\Delta E_{i}}{E_0} \right)^2$$

$$z_{i}^* = z_{i}^* - \frac{\Delta E_{i}}{E_0} c \Delta T$$

for longitudinal motion and

$$r_{i}^* = r_{i}^* + \text{Re} \left[f_i^* e^{-i \varphi_i} \right] \Delta \theta$$

for transverse motion.
\[\phi_i^* = \phi_i^0 + \Delta v_i \Delta \theta + \frac{\text{Im} \left[g_i^0 e^{-i \phi_i^0} \right]}{\left(\frac{\tau_i + r_i^0}{2} \right)} \Delta \theta \]

(13)

\[g_i^0 = \frac{1}{4 \pi \epsilon_0} \sum_{j=1}^{N_j} q_j \alpha_i \sum_{k=1}^{N_k} \beta_2^* W_k^0(z_j^0 - z_i^0) \]

(14)

for transverse motion, where \(a = \text{re}^\ast \) and \(r = 1 a \). and \(\Delta \theta = 2 \pi \frac{\Delta T}{T_0}. \)

3-2 Localized Broad-Band Impedance

The effects of localized borad-band impedance such as cavities are treated as

\[z_i^0 = z_i^0 \]

(17)

\[\Delta E_i^0 = \Delta E_i^0 - e \sum_{j=1}^{N_j} q_j W_j^0(z_j^0 - z_i^0) \]

(18)

\[a_i^0 = a_i^0 - e \frac{\beta_2^*}{\epsilon_0} \sum_{j=1}^{N_j} q_j x_j^0 W_j^0(z_j^0 - z_i^0) \]

(19)

\[x = \beta_2^* \eta = \beta_2^* \text{Re} [a e^{i \phi_0}] \]

(20)

3-3 Acceleration

Acceleration are treated as

\[z_i^* = z_i^0 \]

(22)

\[\Delta E_i^* = \Delta E_i^0 + e V_a \]

(23)

\[e V_a = e V_c \sin \left(2 \pi \frac{n}{n_f} + \phi_c \right) \]

(24)

\[a_i^* = a_i^0 - i e V_a \text{Im} [a_i e^{i \phi_0}] e^{-i \phi_0} \]

(25)

3-4 Radiation Excitation

Following equations are used for radiation excitation,

\[\Delta E_i^* = \Delta E_i^0 + \sqrt{4 \frac{\Delta T}{T_0}} \frac{\text{Im} E_k^0}{\epsilon_0} u_i \]

(26)

\[a_i^* = a_i^0 + \sqrt{4 \frac{\Delta T}{T_0}} e_0 \]

(27)

where \(u, v \) is the Gaussian random number and \(w \) is uniform random number, \(\Delta T \) is the time difference between each excitation.

4 Particle-In-Cell Method

Instead of huge number of electrons, SISR uses superparticles. A Particle-In-Cell(PIC) method is used to make wake field and interact the particle with the wake field. The shape function used in SISR is

\[S(x) = \begin{cases} \frac{x^2}{\Delta x^2} + \frac{1}{2} & |x| \leq \frac{1}{2} \Delta x \\ \frac{1}{2} - \frac{x^2}{\Delta x^2} - \frac{1}{3} & \frac{1}{2} \Delta x < |x| \leq \frac{3}{2} \Delta x \\ 0 & \frac{3}{2} \Delta x < |x| \end{cases} \]

(28)

and the distributions

\[\begin{array}{c} \rho(z_p) \\ a_p(z_p) \\ x_p(z_p) \\ \end{array} = \sum_{i=1}^{N_i} \begin{array}{c} q_i \\ a_i q_i \end{array} S(z_i - z_p) \]

(29)

are evaluated on the mesh points whose position is represented with \(z_p \).

And wake potentials appeared in above equations are evaluated at the mesh points using these distributions as

\[E_{\text{local}}^0(z_p) = -\sum_{j=1}^{N_j} q_j a_j \sum_{k=1}^{N_k} \beta_k W_k^0(z_j - z_p) \]

(30)

\[= -\int a_j(z') \sum_{k=1}^{N_k} \beta_k W_k^0(z' - z) d\zeta \]

(32)

\[E_{\text{local}}^1(z_p) = \sum_{j=1}^{N_j} q_j x_j^0 W_j^0(z_j - z_p) \]

(33)

\[= -\int x_j(z') W_j^0(z_j - z) d\zeta \]

(34)

The potentials at the particles are obtained with

\[E_{\text{local}}^0(z_p) = \sum_{p=1}^{N_p} E_p(z_p) S(z_p - z) \]

(35)

5 Evaluation of Wake Function

The three types of impedance models listed below are used to get wake functions[1,2,3]

The three types of impedance models[3] listed below are used to get wake functions. For longitudinal,

\[Z^0_{\text{L}} = -i \omega Z_{\text{L}}^0 \]

\[Z^0_{\text{L}} = \frac{Z_{\text{L}}^0}{\omega} \]

\[Z_{\text{L}}^0 = \frac{Z_{\text{L}}^0}{\omega^2} \]

and for transverse,

\[Z^1_{\text{L}} = -i Z_{\text{L}}^1 \]

\[Z_{\text{L}}^1 = \frac{Z_{\text{L}}^1}{\omega} \]

\[Z_{\text{L}}^1 = \frac{Z_{\text{L}}^1}{\omega^2} \]

6 Conclusion

The single-bunch instabilities simulation code SISR is developed. SISR is the particle-in-cell code and uses complex amplitude of electrons to describe electron motion. This method can treat distributed impendence, such as small discontinuities. SISR also can treat localized impedance such as cavities.

References

