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Simulation Study of Single Bunch Instabilities
in the SPring-8 Storage Ring
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SPring-8, Kamigori, Ako-gun, Hyogo, Japan

1. Introduction
The single-bunch instabilities  driven by broad-band

impedance in the SPring-8 storage ring was studied using
the simulation code SISR(Single-Bunch Instabilities in
Storage Rings)[1] developped in SPring-8.

2. the SPring-8 Storage Ring
The SISR is applied to the study of the instabilities of

the SPring-8 storage ring. The parameters of the ring is
shown in Table 1.

Table 1. The parameters of the SPring-8 storage ring.
Parameter Value Unit

Energy E0 8 GeV

Revolution Frequency T0 208.77 kHz
Energy Loss per Turn U0 9.2 MV
Damping Partition Numbers JE / Jβ 2 / 1

Momentum Compaction Factor α 1.41×10−4

Betatron Tune (vertical) ν0 16.16

Averaged Betatron Function β 17.3 m

The broad-band impedance of the ring are estimated
with MAFIA[2]. The longitudinal  impedance is

   Z || = −9.68×10– 8 ω i + 400 + 1.49×1081+i
ω   [Ω] 

(28)
and the transverse impedance of small discontinuities is

   β BBZ BB
⊥ = 17.3× –2.13×105+5.98×1014 1

ω [Ω] (29)
and the transverse impedance of cavities is

   β Cav Z Cav
⊥ = 10.0 × 4.2×1019 1 + i

ω ω   [Ω] (29)
, where βΒΒ is the averaged value of the beta functions at
thef small discontinuities and βCav is the value of the beta
function at the cavities. Transverse instabilities are
estimated only for y direction which has larger transverse
broad-band impedance by smaller aperture of the beam
pipe.

3. Simulation Results

3.1 Longitudinal Instabilities

Figure 1 shows the dependence of the bunch length
and the energy spread σE/E on the bunch current Ib.
Because this ring is rather inductive compared to coloreds
which have a lot of cavities, the potential-well distortion
lengthen the bunch length and the threshold of microwave
instabilities can not be seen until the threshold current of
the transverse instabilities which is shown later.
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Figure 1. The bunch length and energy spread.

3.2 Transverse Instabilities

Figure 2 shows the bunch current increase vs. time
used in the simulation.
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Figure 2. bunch current shape vs. time

Figure 3 and Figure 4 show the amplitude of betatron
motion of the bunch vs. time and the spectrum of betatron
oscillation for chromaticity ξ=0, respectively. Instabilities
occurs at Ib=3mA and Ib=7mA for ξ=0 and Ib=10mA for
ξ=4.

From Figure 4, the shift of the frequency of m=0
mode is comparable to the synchrotron frequency, 1.5kHz
at Ib =3mA and 2x1.5kHz at Ib=7mA. These instabilities
seems to be a mode-coupling instability of m=0 and m=1
at Ib =3mA and that of m=0 and m=2 occurs at Ib=7mA
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Figure 3. Amplitude of the betatron motion vs. time
for ξ= 0.
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Figure 4. Spectrum of the betatron motion of the bunch
for ξ= 0.

In Figure 5, which is for ξ=4, No instabilities occurs
near Ib=3mA, but the m=2 mode growths up at Ib=10mA.
The difference between ξ=0 and ξ=4 seems to be from
the effect of the head-tail damping, which can be seen at
the beginning of the bunch current increase at time ~ 5ms
in Figure 5 and it is much faster than radiation damping
seen at Ib=0mA.
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Figure 5. Amplitude of the betatron motion vs. time
 for ξ= 4.
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Figure 6. Spectrum of the betatron motion of the bunch
 for ξ= 4.

 Figure 7 and Figure 8 show the case of chromaticity
ξ=-2. The m=0 mode grows rapidly and obvious threshold

current is not seen. This is the typical characteristics of
the head-tail instabilities.
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Figure 7.Amplitude of the betatron motion of the bunch
 for ξ=-2.
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Figure 8. Spectrum of the betatron motion of the bunch
 for ξ= -2.

4. Conclusion
The simulation code for single-bunch instabilities

was developed and applied to the SPring-8 storage ring.
Bunch lengthening caused by potential well distortion
effect is seen but no longitudinal microwave instabilities
occures until the threshold current of the transverse
instabilities. The threshold current of the transverse
mode-coupling instabilities of m=0 and m=1 is a few mA
and the strength of this coupling is so small and can cure
with the positive chromaticity. However the mode-
coupling instabilities of m=0 and m=2 is strong and can
not be cure by increase of the chromaticity.
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