Model Calibration via Measurement of Betatron Functions and
Phase Advances

Guimin LIU , Schin DATE, Kouichi SOUTOME,
Hitoshi TANAKA, Masaru TAKAO and Haruo OHKUMA

SPring-8, Kamigori, Ako-gun, Hyogo 678-12, Japan

1. Introduction

Linear optics measurement is an essential issue
for parameter tuning at a storage ring, but beta-
tron functions and phases cannot be obtained con-
sistently through the conventional measurements.
Therefore, we are developing a new method to es-
timate betatron functions and phases consistently
on the basis of an orbit response matrix and a ring
model.

2. Theory

The orbit response matrix in this case is de-
fined by the changes of orbits at the beam position
monitors (BPMs) generated by kicks using steer-
ing magnets. This matrix, named M,,cqs, can be
obtained experimentally. On the other hand, for
given magnet gradients in accelerator optics mod-
eling programs, the response matrix, named M,,qq4,
can be calculated. The idea behind the model cal-
ibration method [1, 2] is that parameters in the
model like quadrupole strengths and steering mag-
net strengths are optimized until the deviation be-
tween the model response matrix (Mp,,4) and the
measured one (M,,e,s) becomes minimum. The ob-
jective function for fitting is written by
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where, for the SPring-8 storage ring, the sum is
over the 568 (285 horizontal and 283 vertical) steer-
ing magnets and the 576 (288 horizontal and 288
vertical) orbit data at the BPMs . The {oy,i =
1,---,576} are the measured rms noise levels for
the BPMs.

It should be noted that minimizing {| V ||? (the
norm of vector V) is equivalent to minimizing x2.
Starting with a set of initial values, ¢ng, for the
model parameters, such as the quadrupole gradi-
ents, the initial vcetor VE) and its first-order deriva-
tives with respect to the model parameters can be
calculated. The x? is minimized by solving the fol-
lowing equation assuming Vj is a linear function of
dn
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where the changes of the model parameters, {Agy,,n =

1,2,---}, are the closest solution of Eq. (2) which
can be solved in a straight forward manner by the
least squares method. Since the orbit response ma-
trix does not depend linearly on the quadrupole
graidents, an iteration process will continue until
the solution converges to the best set of parameters
Qn-

The parameters varied to fit the data are: (1)
the quadrupole gradient errors in the quadrupole
magnets (480), (2) the quadrupole field errors in
the sextupole magnets (336) due to beam offsets
in the sextupoles, (3) the calibration factors of the
BPMs (576), (4) the calibration factors of the steer-
ing magnets (568), and (5) the energy shifts associ-
ated with changing the strengths of the horizontal
steering magnets (285). When a horizontal steering
magnet strength is changed in a dispersive section,
the energy shift is expressed by the following equa-
tion (3]
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where 6 ; is the change of the i-th horizontal steer-
ing magnet strength, 7, ; is the dispersion at the
steering magnet, « is the momentum compaction
factor, and Ly is the circumference of the ring. This
energy shift results in orbit shifts in the dispersive
sections. Because there is no direct way to measure
the dispersion at the steering magnets, the —A%
values are taken as fitting parameters. Using the
measured dispersion at the BPMs, it is possible to
fit the energy shifts associated with each horizontal
steering magnet.

The total of 2245 parameters should be opti-
mized to fit the 163584 elements in the SPring-8
ring response matrix. This means that at least a
memory area of 3GB is required for computer sim-
ulation, this memory area size is beyond the capa-
bility of our computer system. Accordingly, some
resonable constraints should be introduced to the
system to be solved.

3. Simplified Model of Ring

Although model calibration methods have been
successfully used to analyze a small storage ring,
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such as ALS [4], NSLS VUV and X-ray (2] rings, it is
very difficult to apply such methods to a large ring,
such as the SPring-8 storage ring. The following
two factors are crucial elements limiting the capa-
bility of the methods. Firstly, the ring is very large
with many BPMs, steering magnets, quadrupoles,
and sextuploes, so the coefficient matrix becomes
huge. Therefore, a memory area of 3G B is required
as explained in the above section.

Secondly, the ring has large natural chromatic-
ities and is very sensitive to sextupoles, so it is im-
possible to store a beam and measure the orbit re-
sponse matrix with the sexupoles turned off. With
the sextupoles turned on, the number of model pa-
rameters to fit the measured response matrix is in-
creased and the numerical accuracy is deteriorated.
In addition, since the sextupoles are always close to
the quadrupoles in the ring, the method itself can-
not distinguish the quadrupole field errors coming
from quadrupoles and comeing from sextupoles by
using the orbit data with a few pm monitoring er-
rors. Here, the fitted model parameters suffer large
systematic errors. This means that it is meaning-
less to calculate the quadrupole field errors from
magnets one by one. Instead only the effective in-
tegrated quadrupole field errors in the girders are
important in simulations of such a type.

Therefore, we take two stcps to simplify the
model for the ring: (1) The steering magnets in one
quarter of the ring are used (72 horizontal, 72 ver-
tical). (2) The effective integrated quadrupole field
errors in the girders are regarded as fit parameters.
The ring has 48 cells with three girders in each cell.
Since the change of the phase advance in the mid-
dle girder is double that in the two outside girders,
we assign two effective integrated field errors in the
midlle girder to reduce systematic errors. Conse-
quently, we have four effective integrated quadru-
ploe field errors in each cell. The total number is
192.

By using this simplified model of the ring, only
984 parameters should be varied to fit the 41472
elements of the response matrix. The coeflicient
matrix is largely reduced. As a result, the computer
memory needed is reduced from 3GB to 330M B
which is acceptable for our computer system.

4. Results

The accuracy of the model calibration depends
on both random and systematic errors. In order to
reduce the effect of random errors, such as the ran-
dom noise of the BPMs, we should use the changes
of steering magnets as much as possible to increase
the signal to noise ratio. However, in order to re-
duce the effect of systematic errors, such as the non-
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Fig. 1 Estimated horizontal betatron function
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Fig. 2 Estimated vertical betatron function

linearity of BPMs and the nonlinearity of higher
order fields, we should keep the changes of steering
magncts 0o small as possible. Accordingly, the mag-
nitude of changes of steering magnets of 50urad, is
chosen to produce approximately 0.6mm rms changes
in the orbits at the BPMs to measure the response
matrix.

The agreement between the model and mea-
sured horizontal resolution and vertical orbit shifts
are 3.8um rms and 4.3um rms, respectively. Hence,
the calculated response matrices almost converge
down to the horizontal and vertical resolution of
BPMs of 2.9um rms and 3.5um rms, respectively.
The remaining difference probably comes from the
simplification of the ring model. Although the ac-
curacy of the method is difficult to determine, the
fitted betatron functions and phases have relative
errors less than 1% and 0.05% rms, respectively.
In addition, the calibration factors of BPMs and
steering magnets, and the effective integrated focus-
ing error distributions in the girders are obtained
consistently. The estimated betatron functions are
shown in Fig. 1 (horizontal) and Fig. 2 (vertical).
The rms modulation of the betatron functions is
about 4% at both the horizontal and vertical planes.

Table. 1 Designed, measured, and fitted tunes

Tunes | Designed Measured Estimated
Q= 51.3081 | 51.234+ 0.001 51.2354
Qy 16.4217 | 16.307+ 0.001 16.3077
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Fig. 3: Local horizontal betatron functions at the
serial quadrupoles of four straight cells (i.e., cell
numbers 6, 18, 30, 42). Since each cell has 10
quadruploes, the total number is 40. This means
1 to 10 for cell 6, 11 to 20 for cell 18, 21 to 30 for
cell 30, 31 to 40 for cell 42.

Local Vertical Betatron Functions [m]
40 T v

orL T ] "Eﬁ
ol 1 & f #g ii H% f i

Fig. 4: Local vertical betatron functions at the
serial quadrupoles of four straight cells (i.e., cells 6,
18, 30, 42). See Fig. 3 for details.

The optimized model parameters also show a good
agreement with other optics measurements. Table
1 shows a comparison between measured tunes and
estimated tunes. Figures 3-4 and Figures 5-6 show
a comparison of local S-functions and averaged -
functions between measured and calculated. The
measured local S-functions can only become avail-
able at the quadrupole magnet locations in four
straight cells ( i.e. cells 6, 18, 30, 42). The averaged
B-functions were measured at the ten families of the
. quadrupole magnets. In both measurements, the
pB-functions were estimated by measuring the tune

shifts through the following equation Av = Aﬁl’ﬁ

5. Conclusion

The model calibration method is a powerful way
of calibrating the linear optics of a storage ring con-
sistently. In order to calibrate the SPring-8 storage
ring, the concept of effective integrated quadrupole

field errors is introduced. As a result, the 8-functions

predicted by the model agree with measured (-
functions. The leakages of local bump orbits, by
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Fig. 5: Horizontal averaged betatron functions for
the serial quadrupole families of the ring. As each
family of quadrupole magnets is powered serially,
we cannot measure the betatron functions one by
one. Accordingly, only the averaged betatron func-
tion for each family was measured. Since each cell
has 10 quadrupoles, the total family number is 10.
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Fig. 6: Vertical averaged betatron functions for the
serial quadrupole families of the ring. See Fig. 5
for details.

which we can check both the local betatron function
and phase values, are being measured to further
verify the validity of the model calibration method.

References

(1] W.J. Corbett, M.J. Lee and V. Ziemann, Stan-
ford Linear Accelerator Center, SLAC-PUB-
6111, May, 1993.

(2] J. Safranek, Nucl. Instr. and Meth. A 388 1997,
pp. 27-36.

(3] J. Bengtsson and M. Meddahi, Proc. 1994 Eu-
ropean Particle Accelerator Conf., 1021-1023.

[4] D. Robin, J. Satranek, G. Portmann and H.
Nishimura, Proc. 1996 European Particle Ac-
celerator Conf., 971.

—176—



