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1. Introduction

Recently, for the stored beam in the electron stor-
age ring, there has been increasing interest in making
the bunch length short. One of the important essences
for the short bunch is the smallness of the momentum
compaction factor. In order to make a momentum com-
paction factor extremely low, one should control not
only the linear part of the dispersion function but also
the nonlinear part. Hence the development of analyti-
cal expression for the nonlinear dispersion is significant
to give a scheme of precisely controlling a momentum
compaction factor. Up to the second order the pertur-
bation of the nonlinear dispersion is studied by second-
order transfer matrix method [1] and by simplified dif-
ferential equations of motion [2]. The latter method is
completed by J.-P. Delahaye and J. Jager [3] who gave
the formal expression of the nonlinear dispersion up to
the second order. We then accomplish the closed form of
the recurrent equations for higher order terms of the dis-
persion function by means of the Hamiltonian formalism
and solve the equations perturbatively up to the fourth
order. The detail of the present report can be found in

(4].

2. Formulation

Starting from the Hamiltonian with a momentum de-
viation é from the design value, the equation of mo-
tion for a particle with off-momentum is written down,
whose periodic solution is the dispersion function. Here
we assume that there is no vertical bending field, so that
we have no vertical dispersion. Expanding the horizon-
tal motion with respect to the momentum deviation ¢,
we derive the recurrent equations for higher order terms
of the nonlinear dispersion function, which have the fol-
lowing general expression:
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Here we expand the transverse motion as
z =006 +m&” + 1726% + n36* + a8 + O (6), (2)

and the inhomogeneous term §2, (7o, - - -
rived perturbatively, e.g.
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and so on. Here A is the curvature of the bending
magnet, and gg and Ay the strength of the quadrupole
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Fig. 1: Linear dispersion function at a quarter of the stor-
age ring. The solid line denotes the numerical calcula-
tion and the full circle the measured values.

and sextupole magnets, respectively. Since the recur-
rent cquations have the same form as harmonic oscilla-
tion with the driving force, the formal solutions of the
equations can be easily obtained in terms of the Green
function [5]. One then finds that the highest pole of the
magnetic field appearing in the explicit expressions of
the nonlinear dispersion corresponds to the order of the
expansion. For example, the sextupole magnet first ap-
pears at the first order, the octupole at the second order,
and so on. This fact suggests that in principle we can in-
dependently adjust each order term of the nonlinear dis-
persion by using magnets with suitable multipole field.

3. Numerical Study

The numerical integration can be carried out by the
transfer matrix method. The driving terms of the equa-
tions can be regarded as the curvature of a sector magnet
and hence the periodic solutions of the harmonic equa-
tions are easily derived from the transfer matrix. For
the storage ring of SPring-8, which is the brilliant light
source facility with electron beam energy 8 GeV, the
nonlinear dispersion functions for the design optics are
numerically calculated up to the fourth order. We show
the zeroth and the first order of the dispersion function
in Figs. 1 and 2. As the actual orbit is not know pre-
cisely, we use the design optics to calculate the nonlinear
dispersion. Although for the second and the third order
nonlinear dispersions can be calculated as well, but we
do not display the figures for the sake of saving space.
To clarify the condition where we can use the design op-
tics for the calculation of the nonlinear dispersion, we
calculate it for the cases with some realistic closed orbit
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Fig. 2: The first order nonlinear dispersion function at a
quarter of the storage ring. The solid line denotes the nu-
merical calculation and the full circle the measured val-
ues.

distortion (COD). The result implies that, if the distor-
tion of the linear dispersion is small, up to the third order
there is little difference between the ideal dispersion cal-
culated from the design optics and the dispersion of the
actual optics with some COD’s. On the other hand, one
finds that at the fourth order the difference grows larger.
It is then concluded that up to the third order we can dis-
cuss the nonlinear dispersion by means of our formula-
tion with the design optics under the condition that the
leakage of the linear dispersion is made to several per-
cent order compared to the peak value.

4. Experimental Study

The measurement of the nonlinear dispersion was car-
ried out at the storage ring, where the COD is corrected
less than one hundred pm in r.m.s. value and hence the
leakage of linear dispersion is less than several percent
of the peak value. The full circles in Figs. 1 and 2 indi-
cate the measured values of the dispersion function. We
found that up to the second order there are no remarkable
discrepancy between the theory and the experiment. On
the contrary to the numerical calculation, we do not see
a good agreement between the theoretical and the mea-
sured values at the third order of the dispersion. This can
be explained by the narrow available momentum range
to fit the dispersion. At the range, the contribution of the
fourth power of the momentum deviation to the disper-
sion, i.e. the third order term becomes comparable to the
order of the BPM noise level, several pum.

5. Discussions

We derived the recurrent expressions for the higher
order terms of the nonlinear dispersion function for a
ring with a large radius of curvature. The measurement
of the nonlinear dispersion at SPring-8 agrees fairly well
with the formula up to the second order. One of the rea-
sons of this good agreement is that since the COD is well
corrected, the estimation of the nonlinear dispersion by
using the design optics approximates to the one of the
actual orbit. On the other hand, the reason of the larger
disagreement at the third order and the higher orders is

that the range of the momentum deviation over which
one fits the nonlinear dispersion is limited by the mo-
mentum acceptance: although the larger momentum de-
viation is necessary for estimating the higher order terms
of the nonlinear dispersion, only the limited region of the
momentum is available. In the restricted region the dif-
ference of the orbit due to the higher order terms is small,
so that it is difficult to derive the higher order terms by
means of the polynomial fitting.

In conclusion, it is possible to estimate the nonlinear
dispersion function up to the second order by using the
present formulation. Although there remains an ambi-
guity to use the third order term of the dispersion calcu-
lated from the design optics, the following fact may sup-
port the smallness of the deviation from the design value
due to the COD. By means of the nonlinear dispersion,
we can predict where the electron beam is lost when the
RF power is abruptly turned off. At the SPring-8 storage
ring, the design nonlinear dispersion predicts the beam
to be lost at the place just after missing-bend straight sec-
tions. This is indeed observed in machine operation of
SPring-8: the radiation level at the missing-bend straight
section increases when the beam is aborted by suddenly
turning off the RF power.
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