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1. Introduction

In order to achieve low vertical emittance, we need
to suppress (a) energy transfer from a horizontal
betatron oscillation to a vertical one through skew
quadrupole fields and (b) spurious vertical dispersion.
As a first step toward extremely low vertical emittance
and also to study Toucheck effect on beam lifetime, we
developed a new method to control the coupling ratio
of two eigen modes on the basis of eigen mode
analysis.

In usual operation of the SPring-8 Storage Ring,
vertical emittance is extremely small, about 10 pmerad
( ~ 0.2 % by the ratio of vertical emittance with
horizontal one ) because of the precise alignment of
main magnets. This fact is the key to think about a
method for the control as described in the section 3.

By our method, we can precisely control the
coupling ratio of the Storage Ring in a wide range at
least from 0.2 to 100 %. It is also applicable to the
correction of coupling between horizontal and vertical
betatron oscillations.

2. Transformation to Eigen Mode

Time evolution of a transverse linear motion at a
certain observation point is described by 4 X 4 one
turn matrix Myy.
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where Mij(s) represents a 2 x 2 partial matrix.
Provided that a storage ring has ideal condition without
any error, the horizontal and vertical phase spaces, (x,
x") and (y, y') comprise eigen spaces. In this case, the
off-diagonal partial matrices in Eq. (1) are zero. When
skew quadrupole fields are once introduced in the ring,
horizontal and vertical oscillations are mixed and they
are no longer eigen modes. This means that the off-
diagonal partial matrices become non zero. By using a
linear transformation [1], we can move from x-y
coordinate to u-v coordinate where new eigen spaces,
(u, u") and (v, v') can be defined. The one turn matrix
in this coordinate takes the form of
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We can define Twiss parameters in the u-v coordinate
as well and express (u, u') and (v, v) in the same form
as (x, x") and (y, y") by using the Twiss parameters as

w(s) = ¥ &w Bu(s) -cos(Qu(s) + Puo), 3)
W'($) = -Y En Y (8) -sin(@u(s) + Gwo),

siks

2
(p”(s) = f ds; 1 , }’w(S) = HA ,
50 ,BW(SI) BW(S)

dBus)
ds

Oy = , W=uorv.

L

2
where ew and PBw are respectively the emittance and
betatron function of the w plane. The one turn matrix
M, can be built from the partial matrices of the Myy
by the equations below.
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In the above equations, the superscript T represents the
transpose of a matrix. By using betatron and dispersion
functions in the u-v coordinate, the emittance of two
eigen modes can be calculated with the well known
formula for natural emittance [2].

3. Method to Control Coupling Ratio

Here, we emphasize again that the nominal coupling
ratio is negligibly small in the Storage Ring, ~ 0.15
%. Our method stands on this fact and comprises two
parts. One is to construct a model to describe a real
ring. The model defined here has the same dependence
of eigen tunes on optics as a real ring. The other is to
calculate emittance of each eigen mode for the
constructed model by using lattice functions in an
eigen coordinate. The model construction depends on
strength of the coupling as discussed below.

Weekly coupled regime
In the case where the coupling ratio is small, that is,

- the resonance excitation is week, we can analyze the

coupled oscillation by perturbative treatment based on
the single resonance approximation. This means that
the x-y coordinate is approximately regarded as an
eigen coordinate. The vertical emittance induced by the
resonance is thus determined by the single global
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parameter, called the resonance excitation term, not by
local parameters. Accordingly, the model we need to
estimate the coupling ratio is one which reproduces the
dependence of measured tunes on the optics with
simple distribution of skew quadrupole fields.

Strongly coupled regime

In the case where the coupling ratio is large, that is,
the resonance excitation is strong, we can not neglect
the distribution of error sources. Since the natural
coupling ratio of the Storage Ring is small as
mentioned above, we can add known skew fields to
adjust the coupling ratio. If these fields are much
stronger than unknown error fields distributed in the
Storage Ring, we can approximate the real ring as the
ring having only known skew fields added.

From the small to large coupling ratio, we can
control its value with high precision by using our
method. This is a very powerful tool especially in the
machine study where we need to adjust the coupling
ratio to an arbitrary value precisely.

4. Application Example

Experimental results only for the weekly coupled
regime are discussed here. We changed the coupling
ratio in the Storage Ring from ~ 0.2 to 20 % by
changing the operation point. This was carried out by
adjusting two families of quadrupole magnets in the
dispersion-free sections.

The measured and calculated eigen tunes are shown
in Fig. 1 as a function of the quadrupole strength. We
calculated the eigen tunes here with the ring having
only the single local bump of 3 mm as an error
source. This amplitude was obtained by fitting the
measured eigen tunes shown in Fig. 1. The calculated
values have a good agreement with the measured ones.
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Fig. 1 Comparison between measured and calculated
eigen tunes in the Storage Ring.

The difference between measured eigen tune and
calculated one by our model is ~ 0.008 as an r.m.s.
value.

In Fig. 2, the coupling ratio is shown at each
operation point, which were estimated by both the
perturbation theory and the eigen mode analysis. The
discrepancy between two kinds of data in Fig. 2
becomes larger at large coupling ratios. This is
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Fig. 2 Comparison between coupling ratios
calculated by the perturbation theory ( filled circles )
and our method ( filled triangles ) based on the eigen
mode analysis.
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Fig. 3 R.m.s deviation of coupling ratio <dx/x>
versus r.m.s. deviation of eigen tunes <dv>. Ten
operation points were used for averaging.
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because the simple perturbation theory is only valid in
a weekly coupled regime. The eigen mode analysis
without any perturbative treatment is free of this limit.

To roughly estimate errors of the calculated coupling
ratios, we investigated variation of both coupling
ratios and eigen tunes by changing a single bump
amplitude by 5 %, 12.5 %, and 25 %. The dependence
of coupling ratio on eigen tune deviation for this
model case gives a crude scale for the calculation error.
The results are shown in Fig. 3. The calculation error
depends almost linearly on the eigen tune deviation.
Figure 3 shows that an r.m.s. calculation error of the
coupling ratio becomes an order of several percent
when an r.m.s. eigen tune deviation is about 0.008,
i.e. the case in Fig. 1.
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