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1. Introduction

The betatron oscillation of a beam in a storage
ring with finite chromaticity, excited by external
shaking force, is analyzed. This can be applied to
to the energy spread measurement of a beam.

2. Single Particle Motion

2-1 Green Function
We assume that energy oscillation of an electron

executing synchrotron motion is

8§ = 6 cos(wst + ¢) (1)
where 6 = % is a relative energy shift from the
reference energy Fy of the ring and w; is a syn-
chrotron frequency.
With finite chromaticity £, betatron frequency
has time dependence as
w(t) = wg [1 + &5 cos(wst + ¢>)] (2)
We define oscillating part of the tune as Aw = ngé
for later discussion.
The equations of betatron oscillation of an elec-
tron under chromaticity, excited by a external force
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where ¢ is a transverse coordinate and - is the
Lorentz factor of electrons.

We will solve above equations under the assump-
tion that

¢ small damping rate; o << w(t)
e small modulation amplitude; —A‘;ﬂ <«<1
e synchrotron frequency is slow compared to beta-

tron frequency; “x << 1.

First we will show the Green function of the
system by setting F(t) = §(t —t’). The solution for
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where we use w'(t) = \/w(t)2 — o2 ~ w(t) and
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G(t,t") is the Green function of the system.

2-2  Ezxcitation by Shaker

We assume that one shaker in a ring excites be-
tatron oscillation of a beam and length of the shaker
is short enough compared to the value of beta func-
tion at the location of the shaker. With this as-
sumption, we can use d-function to represents the
shaker force then the external force in Eq. (4) is
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where 6 is the kick angle amplitude of shaker force.
The solution for 0 < t < Ty can be obtained
using the Green function Eq. (7) and is
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and we uses the assumption that w(t) ~ wg to mod-
ity Eq. (12) to Eq. (13).

The reference for time is the phases, ¢ and 1,
which appear in Eq. (1) and Eq. (10), respectively,
hence you can obtain ¢(t) for time nTp <t < (n +
1)T% by shifting these phase as ¢ — ¢ + w,nTp and
'(ﬁ — ’lp + wsnTo.

Now we have a motion of an electron excited by
a shaker in a ring with chromaticity.

3. Bunch Motion

Equation (14) is a motion of an electron of the
amplitude § and the initial phase ¢ of energy os-
cillation. To get a bunch motion, we have to sum
it up for all electrons in a bunch using longitudi-
nal distribution function. First, we will expand the
former part of Eq. {(14) using Eq. (8);
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We assume that the longitudinal distribution of
electrons in a bunch is Gaussian,
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where Aw = wg{g.

Until now, we only treated the case of a ring
with constant focusing to simplify the discussion.
For actual situation, instead of Eq. (3)-Eq. (4), we
have to start with the equations [1]
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where 3, is the beta function at the observation
point and J; is the beta function at the shaker.

4. Amplitude

The function h(wys) has many peaks at jwy| =
Jwa +nws| where n is integer and the height of these
peaks are the same.

If we assume that the distance between peaks is
wide enough, the amplitude of betatron oscillation
of an electron around |wy| ~ |wg + nws| is
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and the amplitude of betatron oscillation of a center
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of mass of a bunch around |wys| ~ |wg + nw,| is
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5. Vlasov Equation

For people who are familiar with Vlasov equa-
tions, it must be easier to get the result for bunch
motion through it treating the shaker force as per-
turbation. If we neglect the damping term, the
Vlasov equation for the system Eq. (21)-Eq. (22)
is
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where transverse coordinate is y = gcos . Follow-
ing usual scheme [2], we can solve above equation

by setting
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where 7 and ¢ are defined as z = rcos¢ and § =
%r sin ¢ using relative distance z and relative en-
ergy spread 6. The bunch motion is < y >= /B <

7 > and
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which is the same result as Eq. (23).
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6. Energy Spread Measurement

From Eq. (25), we can observe several sideband
peaks in the frequency response spectrum of the be-
tatron motion and the peak hight of n-th sideband
is proportional to
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because the maximum value of the function |h(w;y)]
around wy = w £ nw, is independent of n.

This shows that if we measure the ratio of each
peaks, we can obtain 5—“;@ using Eq. (31) and, if
we know ¢ and wg, we ha;/e Cs.

7. Conclusion

From Eq. (14), the amplitude of the betatron os-
cillation of an electron of which amplitude of energy

oscillation is & is reduced by the factor J, (é—“ﬂ)

ws

A\ 2 _ 82
and fooo Jn 5—:&5) ‘;1’2'6 277 §dé for a bunch of which
the RMS relative eneérgy spread is o5.

We can obtain the energy spread of a beam with
this relation measuring the relative peak hight of
n = 0,+£1,+2,... for the beam of small current
as collective effects is negligible. The limitation of
this method is that this can only be applied to the
beam of which bunch current is small enough for
collective effects to be negligible.
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