
Collective Excitations in Liquid Collective Excitations in Liquid Si

Fig. 1.  Selected S(Q,ω) spectra normalized
to S(Q).  Experimental data are given by
circles with error bars, and thick solid lines
represent fits of the DHO model convoluted
with the resolution function (dashed line).
Dot-dashed lines show the best convoluted
fi ts  for the quasielastic l ines using a
Lorentzian in comparison to the quasi-Voigt
fits (thin solid lines, shifted from the data).

     The structurally simplest ‘semiconductor’,  Si,
is manufactured by growing the crystal directly
from the ‘metallic’ melt.  This interplay between a
metallic disordered phase and the semiconducting
crystalline state has stimulated much theoretical
and experimental interest in the static and dynamic
propert ies of this system. For example, the
influence of covalent bonds on the dynamics of the
metallic melt was investigated in an early first-
principles molecular-dynamics simulation by
the originators [1].  However, the experimental
investigation of the microscopic dynamics has yet
been hindered by the fact that the collective
longitudinal modes in liquid Si are out of reach of
thermal neutrons due to the high sound velocity 
(~ 4,000 ms-1)  and  the kinematic  restrictions of 
this technique. High-resolut ion inelast ic X-ray
scattering (IXS) is another technique that permits
the study of Q  dependence of excitations in the
meV range, but in contrast to neutron scattering, it
has no kinematic restrictions and the scattered
radiation is entirely coherent within the energy
range of interest.  Combined with a suitable high-
temperature sample environment, we were able to
measure for the first time the dynamic scattering
law S (Q, ) of liquid Si [2].
     The experiments were carried out at beamline
BL35XU using a horizontal IXS spectrometer [3]
(energy resolution: ~1.8 meV  FWHM at 21.8 keV).
The hot sample (T  = 1733 K) was located in a
sapphire container, which was a slight modification
of the so-called Tamura-type cell [4].  It was placed
in a vessel equipped with continuous Be windows
[5] capable of covering scattering angles between
0  and 25 .
     Figure 1 shows selected spectra normalized to
the respective intensity.  Also given is a typical
example of the resolution function (dashed line).
The data clearly prove the existence of longitudinal
collective short wavelength modes, which appear
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as peaks or shoulders in the lower Q  range.  For
the resolution correction, a model S (Q, ) function
convoluted with the resolution function was fitted
to the data.  For this model, we approximated the
central line by a Lorentzian at lower Q  values or by
a pseudo-Voigt function at higher Q  values (see
text below), and the inelastic contribution by a
damped harmonic oscillator (DHO).  Using the fitted
results (thick solid lines), the excitation energy ωc

and the line width Γ Q were determined as shown in
Fig. 2 .  The dashed line represents the dispersion
of hydrodynamic sound, and its slope is given by
the bulk adiabatic sound velocity vs = 3952 ms-1.
The frequencies of the short wavelength modes
increase noticeably faster (~17%) with Q  than
predicted by classical hydrodynamics.  This so-
called ‘positive’ dispersion was already found
earlier in liquid alkali metals and also in liquid Hg.      

Fig. 2.  Dispersion relation (circles) and line width
(triangles) of the collective modes in liquid Si.

The collective modes are highly damped at higher
Q  values compared to those in liquid alkali metals.
     The usual choice, in which a quasielastic line is
modelled by a Lorentzian, is not suitable for liquid
Si beyond Q = 20 nm-1 .  Instead we used a quasi-
Voigt function, i . e . , a linear combination of a
Gaussian and a Lorentzian.  Dot-dashed lines in
Fig. 1 show convoluted fits using a Lorentzian in
comparison to the quasi-Voigt fits (thin solid line,
the same as the thick ones).  The quasi-Voigt
function fits the data well, whereas the deviation of
the Lorentzian fits is considerable.  Circles and
triangles in Fig. 3 represent the line width Γ0s and
the Gaussian fraction c  of the quasielastic lines.
The Gaussian contribution becomes noticeably
important at about 20 nm-1 and reaches about 50%
at Q  ~ 30 nm-1.  Around the Q  value where the
maximum in S (Q ) is located, a minimum in Γ0
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Fig. 3.  Q dependence of the quasielastic line width Γ0  (circles).  With
increasing Q, a Gaussian component (open circles) is needed in addition to the
Lorentzian (full circles) to model the central line.  Triangles give the Gaussian
fraction, c.  The arrow indicates the Q position of the first maximum in S(Q).
Inset: S(Q) determined from the zero frequency moment of the present
experiment (squares) together with the result from elastic X-ray scattering [6]. 

(usually Γ0L) is expected, which is the well-known
de Gennes  narrowing.  However it is worth noting
that the minimum of Γ0L is found at about 22.5 nm-1,
while the maximum in S (Q ) is located at 27.3 nm-1

(arrow in Fig. 3, see also S (Q ) given in the inset).
     Besides the damped phonon modes and the        
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anomalies in the quasielastic line, however, direct
evidence for the existence of covalent bonds in
liquid Si (e.g.  localized modes) was not observed.
A detailed analysis using e .g .  a mode-coupling
theory would be useful for a further understanding
of the present results, and is now in progress.
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