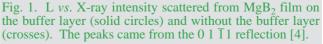

High-quality As-grown MgB_2 Film Fabrication at Low temperature using In-plane-lattice Near-matched Epitaxial-buffer Layer


To date a process for fabricating a superconducting MgB_2 [1] thin film has required a growth and/or annealing temperature higher than 600 °C [2]. When such a process is applied to the fabrication of an integrated device, interdiffusion occurs at interfaces between the integrated layers, which degrades the quality of the device. This is one problem faced in fabricating a high-quality integrated device. We succeeded in the fabrication of high-quality as-grown MgB_2 films [3] and their structural and superconducting characterization [4]. One of the keys to success was the utilization of low-temperature crystal growth combined with a near-matched epitaxial buffer layer. We clarified the function of the buffer layer from a structural point of view.

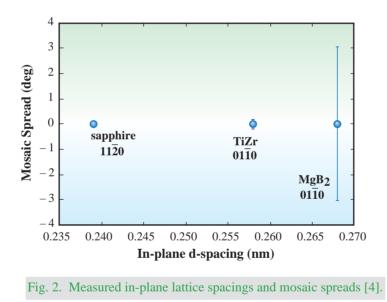
A TiZr buffer layer was deposited on a sapphire AI_2O_3 (0001) substrate at 815 °C by evaporation of a Ti-50 at % Zr alloy source. After the substrate was cooled to room temperature, MgB₂ films were deposited at 270 °C by coevaporation of Mg and B metals, which were evaporated using an effusion cell and an electron beam gun, respectively. The film and buffer layer were determined to be about 300 and 100 nm in thickness, respectively, by high-resolution SEM observation. For a control experiment, we also prepared a MgB₂ film (without the buffer layer) grown on a sapphire (0 0 0 1) substrate.

Superconducting properties were examined resistively and magnetically. The critical temperature T_c of MgB₂/TiZr/Al₂O₃ was about 1 K higher than that of MgB₂/TiZr/Al₂O₃ (not shown here). The applied magnetic field dependences of magnetizations were measured under a perpendicular magnetic field to the film surface. The critical current density J_c was estimated from a magnetization hysteresis loop based on the Bean critical state model. The larger hysteresis loop for MgB₂/TiZr/Al₂O₃ in comparison with that for MgB₂/Al₂O₃ corresponds to a higher capacity for the flow of current in the former MgB₂ film. J_c at 5 K under 1 T magnetic flux density is 6×10^5 A/cm² for MgB₂/TiZr/Al₂O₃. J_c obtained from MgB₂/Al₂O₃ is much smaller than this value at 9×10^4 A/cm², suggesting that the crystallinity of the MgB₂ film in the MgB₂/TiZr/Al₂O₃ could be much improved.

X-ray measurements for film-structural analysis were performed with a six-circle diffractometer at beamline **BL13XU** [5]. An X-ray wavelength of 0.102 nm was used. We located the sample at the 0 1 $\overline{1}$ 1 Bragg position and rotated it around the [0 0 0 1] direction L (almost the surface normal) to record X-ray intensities diffracted from the film (Fig. 1). The MgB₂ film without the buffer layer was a *c*-axis oriented crystal and had no epitaxial relation. Accordingly, we concluded that the crystallinity of the film with the

50

buffer layer was improved.


By similar measurements, it was determined that the buffer layer was also crystalline. The epitaxial relationship in a plane perpendicular to L was obtained: MgB₂ (majority domain) [0 1 $\overline{1}$ 0] // TiZr [0 1 $\overline{1}$ 0] and TiZr [0 1 $\overline{1}$ 0] // sapphire [1 1 $\overline{2}$ 0].

 $q_{\rm R}$, $q_{\rm T}$ and q_{\perp} scans were carried out in the reciprocal-lattice space to determine in-plane lattice spacings of MgB₂ and the TiZr buffer layer. The $q_{\rm R}$ and $q_{\rm T}$ scans were parallel to the radius and tangential direction in the L-constant plane (almost in-plane) passing through a desired Bragg position, respectively. The q_{\perp} scan was parallel to L around the position. The obtained in-plane lattice spacings, $d_{//}^{\rm MgB_2}$, $d_{//}^{\rm TiZr}$, and $d_{//}^{\rm sapphire}$ are 0.268, 0.258, and 0.239 nm for the MgB₂ (0 1 $\overline{1}$ 0), TiZr (0 1 $\overline{1}$ 0), and sapphire (1 1 $\overline{2}$ 0) planes, respectively. It is noted that $d_{//}^{\rm TiZr}$ was between $d_{//}^{\rm MgB_2}$ and $d_{//}^{\rm sapphire}$. The crystallinity of the film with the buffer layer became

higher accordingly.

From FWHMs of $\Delta q_{\rm R}$, $\Delta q_{\rm T}$, and q_{\perp} , we estimated crystal mosaic spreads. The spreads are 6.1° and 0.38° for the MgB₂ film and the TiZr layer, respectively. We plot the spreads with respect to the in-plane lattice spacings (Fig. 2). The spread of the MgB₂ film was around 6°, while the film without the buffer layer was the *c*-axis oriented crystal. This suggests that the buffer layer improves the crystallinity of the MgB₂ film.

In summary, we have found that the in-planelattice near-matched TiZr buffer layer aided the fabrication of the as-grown MgB₂ crystalline film. This is because the in-plane lattice spacing of the buffer layer was between those of MgB₂ and the substrate crystal. T_c and J_c of MgB₂/TiZr/Al₂O₃ were found to be higher than those of MgB₂/Al₂O₃. The near-matched epitaxial crystallinity of the buffer-layered TiZr was of cardinal importance in the low-temperature growth of the high-quality as-grown MgB₂ film.

Osami Sakata^{a,*}, Shigeru Kimura^a and Shugo Kubo^b

- (a) SPring-8 / JASRI
- (b) Department of Materials Science, Shimane University

*E-mail: o-sakata@spring8.or.jp

References

- [1] J. Nagamatsu et al.: Nature 410 (2001) 558.
- [2] W.N. Kang et al.: Science 292 (2001) 1521.
- [3] S. Yata et al.: Physica C 388-389 (2003) 155.
- [4] O. Sakata, S. Kimura, M. Takata, S. Yata, T. Kato, K. Yamanaka, Y. Yamada, A. Matsushita and S. Kubo: J. Appl. Phys. **96** (2004) 3580.
- [5] O. Sakata et al.: Surface Rev. Lett. 10 (2003) 543.