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STRUCTURAL DETERMINATION OF TOPOLOGICAL CRYSTAL

To understand the physical, chemical and
biological properties of novel functional materials,
information on atomic arrangement in these materials
has an indispensable role. The X-ray diffraction
method is one of the most popular and powerful
techniques in determining such atomic arrangement in
a crystal cell. However, it has a limitation in structure
determination. This is because X-ray diffraction is
based on interference between waves scattered by
atoms arranged coherently in space. For this reason,
only crystals having a macroscopic translational
symmetry can be analyzed by X-ray diffraction.

On the other hand, when the size of matter is
reduced, its shape tends to bend and the macroscopic
translational symmetry may be lost similar to carbon
nanotubes and DNA wires. So our question is, “Is it
impossible to determine the atomic arrangement of a
small matter with curved shape? ”

We attempt to answer the above question.
Surprisingly, Tanda et al. produced entirely new
crystals named “topological crystals” whose shapes
are similar to a ring, a Mo6bius strip and a figure of
eight [1]. Figure 1 shows the scanning electron
microscopy images of NbSe; topological crystals [1].
Since both ends of a crystal are bound and twisted,
these crystals are of an entirely different topological
classes from ordinary crystals. Topological crystals
can offer a chance of examining topological effects
such as macroscopic interference in quantum mechanics.

From the crystallographic viewpoint, strains
characteristic of each topological class will emerge in
those crystals by joining two ends. In this report, we
present the lattice parameter variation of topological
crystals.
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Fig. 1. Scanning electron microscopy images of topological NbSe;

The difficulty in X-ray diffraction measurements of
topological crystals lies in the nonuniformity of crystal
orientation due to their curved shapes. If we divide or
crush a topological crystal to obtain smaller crystalline
powder with a macroscopic translational symmetry,
we may lose important structural information
originating from the topological shape. To overcome
this difficulty, we decided to analyze the crystal
structure without any sample treatment. To this end,
we developed a two-axis sample rotator.

The sample rotator consists of two independent
principal (P) and secondary (S) rotators crossing at an
angle of 45 deg. The sample is mounted on the S
axis (see inset of Fig. 2). With the rotation of S, one
reciprocal lattice point traces a ring trajectory. With
the distribution of reciprocal lattice points reflecting
local crystal orientation originating from the curved
shape, the assembly of ring trajectories nearly covers
a part of a sphere in the reciprocal space. With the
rotation of P, this part of the sphere intersects the
Ewald sphere and the diffraction pattern will be similar
to the Debye ring. Certainly, this is not the ideal
Debye ring, which is found in powder crystals without
a preferred orientation.

The effect of sample rotation on integrated
reflection intensity (= Lorentz factor) should be taken
into account. Since local crystal orientation varies
continuously depending on the bent and the twist of a
‘topological crystal’, an accurate calculation of the
Lorentz factor of a specific crystal is not realistic.
Hence, we attempted to minimize the correction of the
Lorentz factor by selecting the integration area in the
imaging plate (IP) for estimating the diffraction
intensity. Figure 2 shows the calculation of the
Lorentz factor for the new two-
axis rotator. With the rotation
of S, one reciprocal lattice
point forms a ring trajectory.
With an increase in angle
between the point and S axis,
the nearest distance between
the ring trajectory and the
Ewald sphere decreases,
where the Lorentz factor
originating from another P axis
rotation tends to diverge. We
removed the contribution from
the nearest part by selecting
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crystals, (a) ring crystal (no twist), (b) figure-of-eight crystal (2t twist).
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the integration area of IP (see inset figure), and
suppressed the singularity in the Lorentz factor.

We measured three rings (a tube, a thick ring and
a thin ring) and two figures of eight and one cut ring.
Owing to the smallness of the sample crystal (e.g.,
50x10x5 pum?3), we used a low-temperature vacuum
camera (LTVAC) at beamline BLO2B1 to diminish X-
ray air scattering. To refine the unit cell parameter,
we performed Rietveld analysis using RIETAN-2000
software.

The relationship between sample thickness and
the ratio a/c are shown in Fig. 3. This change is
caused by an increase in ¢ length and a decrease in
a. This unit cell deformation can be interpreted as a
self-pressure effect in the thicker ring. The inner part
of the thick ring can be pressurized from the outer part
to maintain the sample shape. As compressibility
along the one-dimensional b axis is nearly zero, the
unit cell principally shrinks along the residual a axis
(see Fig. 4). On the other hand, expansion in the ¢
direction is reasonable because the direction is free
from the above pressure effect. In the cut ring, the
lattice parameter is not pressurized possibly owing to
the relaxation caused by cutting. This success in the
structure analysis of topological crystals encourages
us to apply this developed method to other micro- or
nanocrystals that do not have macroscopic
translational symmetry.
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Fig. 2. Lorentz factor for the new two-axis
rotator. Central inset: schematic view of two-axis
rotator, right inset: selected integration area of |P.
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Fig. 3. Thickness dependence of a/c ratio.
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Fig. 4. Schematic view of unit cell deformation
caused by self-pressure effect in the thick ring crystal.
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