## $\label{eq:state} Ferro-type \mbox{ Orbital State in } \\ Mott Transition \mbox{ System } Ca_{2-x} \mbox{ Sr}_x \mbox{ RuO}_4 \mbox{ Revealed by } \\ Resonant \mbox{ X-ray Scattering Interference Technique } \end{cases}$

Among 4*d* electron systems,  $Ca_{2-x}Sr_xRuO_4$  has especially attracted attention because of its rich and novel ground states such as in Mott transition [1-3]. Since  $Ca_{2-x}Sr_xRuO_4$  has four 4*d* electrons in the  $t_{2g}$ orbitals, the significance of orbital degree of freedom is invoked. Nevertheless, few works have been carried out on orbital ordering in 4*d* electron system so far.

The anisotropic tensor of an X-ray susceptibility signal is enhanced near an absorption edge. However, conventional resonant X-ray scattering (RXS) measurement is not useful for the observation of a ferro-type orbital state, in which charges are distributed with the same local symmetry at each Ru ion site. This is because it is difficult to extract the signal for a ferro-type orbital state at  $\Gamma$  points, which is accompanied with large magnitude of a fundamental reflection by Thomson scattering. However, the RXS interference technique can offer unique access to observing the ferro-type orbital state, in which the signal of the ferro-type orbital state is magnified by the interference with a fundamental signal. In the present study, it is revealed that the observation of orbital states by a resonant X-ray scattering interference technique is significant for understanding the rich phase diagram of Ca<sub>2-x</sub>Sr<sub>x</sub>RuO<sub>4</sub> [4].

Figure 1(a) shows the resonant X-ray scattering configuration at beamline **BL46XU**.  $\psi$  is an azimuthal angle, which is the angle around scattering vector Q, while  $\varphi_A$  indicates the detector angle. The X-ray absorption of Ru is observed around 22.15 keV in Fig. 1(b). Figure 1(c) shows the energy profiles at  $Q = (0 \ 2 \ 6)$  with polarization angles of  $\varphi_A = 98^\circ$  (dotted thick line) and 82° (thin line) at  $\psi = 270^\circ$  at 305 K.

The *interference term* for ferro-type orbital ordering is obtained by subtracting the intensity at  $\varphi_A = 82^{\circ}$ from that at  $\varphi_A = 98^{\circ}$ : for  $\varphi_A = 90^{\circ} \pm \Delta \varphi \ (\Delta \varphi = 8^{\circ})$ ,  $I (90^{\circ} + \Delta \varphi) - I (90^{\circ} - \Delta \varphi) \ \alpha \ 2Re [F_{\sigma\sigma} \ F_{\sigma\pi}] \sin^2 2\theta_A$ sin  $2\Delta \varphi$ , in which  $F_{\sigma\sigma}$  and  $F_{\sigma\pi}$  denote the scattering factors for the  $\sigma \rightarrow \sigma$  and  $\sigma \rightarrow \pi$  scattering processes, respectively, and  $2\theta_A$  is the scattering angle in the analyzer crystal.

 $F_{\sigma\pi}$  has information on the asphericity of 4*d* charge distribution, while  $F_{\sigma\sigma}$  corresponds to a fundamental signal. Noticeable point is that  $F_{\sigma\pi}$  is enhanced by  $F_{\sigma\sigma}$ . Therefore, a small signal for a ferro-type

ordering is detectable. The resonant signal for ferrotype orbital ordering in Fig. 1(c) appears near the Kabsorption edge. Near the K absorption edge, an atomic scattering factor is represented by a tensor and the RXS signal has an azimuthal angle dependence.



Fig. 1. (a) Schematic picture of resonant X-ray scattering configuration. (b) Incident energy dependence of X-ray fluorescence in Ca<sub>2</sub>RuO<sub>4</sub>. (c) Energy scans at 305 K for  $\varphi_A = 98^{\circ}$  (dotted thick line) and  $\varphi_A = 82^{\circ}$  (thin line) at azimuthal angle  $\psi = 270^{\circ}$  at  $Q = (0 \ 2 \ 6)$ . The bottom thick line is obtained by subtracting the energy spectrum at  $\varphi_A = 82^{\circ}$  from that at  $\varphi_A = 98^{\circ}$ , which corresponds to the interference term.



## Materials Science : Electronic & Magnetic Properties

In order to further verify that the observed resonant signal corresponds to the orbital ordering in Ca<sub>2</sub>RuO<sub>4</sub>, the azimuthal angle dependence has been observed. The magnitude of the signal at the main edge peak at 305 K exhibits the characteristic oscillation with the 360° period (Fig. 2).  $F_{\sigma\pi}$  mainly contributes to the  $\psi$  dependence of the interference signal.

The observed  $\psi$  dependence shows the minimum and maximum at around  $\psi = 90^{\circ}$  and 270°, respectively, while the intensity approaches zero at  $\psi = 0^{\circ}$  and 180°. These features are well explained by the analysis for a ferro-type  $d_{xy}$  ordering, as shown in Fig. 2. In addition, we analyzed the  $\psi$ -dependence of the resonant signal at  $Q = (0 \ 2 \ 14)$ , which is also consistent with the behavior of the  $d_{xy}$  orbital.

Figure 3 shows the temperature dependence of the RXS signal. Above 200 K, the magnitude gradually decreases and then disappears near a metal-insulator transition ( $T_{Ml} \sim 357$  K). Note that the RXS signal is observed at room temperature. Braden *et al.* showed that at around 300 K, the apical bond length RuO(2) is almost equal to the averaged equatorial bond length RuO(1) [5]. Therefore, the Jahn-Teller distortion is unreasonable for the main origin of the orbital ordering in Ca<sub>2</sub>RuO<sub>4</sub>. As discussed in ref. [6], it is possible that a two-dimensional crystal field as well as a superexchange interaction play a significant role in stabilizing the ferro-type orbital ordering, in addition to the Jahn-Teller effect of a RuO<sub>6</sub> octahedron.



Fig. 2. Azimuthal angle dependences of *interference* term for main edge peak at 305 K and 6 K at  $Q = (0\ 2\ 6)$ .



M. Kubota<sup>a,\*</sup>, Y. Murakami<sup>b,c</sup> and M. Mizumaki<sup>c</sup>

- <sup>a</sup> Photon Factory, IMSS, KEK
- <sup>b</sup> Department of Physics, Tohoku University

c SPring-8 / JASRI

\*E-mail: masato.kubota@kek.jp

## References

- [1] Y. Maeno et al.: Nature 372 (1994) 532.
- [2] S. Nakatsuji *et al.*: J. Phys. Soc. Jpn. **66** (1997) 1868.
- [3] S. Nakatsuji and Y. Maeno: Phys. Rev. Lett. 84 (2000) 2666.
- [4] M. Kubota, Y. Murakami, M. Mizumaki, H. Ohsumi, N. Ikeda, S. Nakatsuji, H. Fukazawa and Y. Maeno: Phys. Rev. Lett. **95** (2005) 026401.
- [5] M. Braden et al.: Phys. Rev. B 58 (1998) 847.
- [6] Fang et al.: Phys. Rev. B 69 (2004) 045116.