Degree of Supercooling (ΔT) Dependence and Mass Distribution Function Q(N,t) of Nano-nucleation of Polymers by SAXS

"Nucleation" was assumed to be the early stage of crystallization in classical nucleation theory (CNT) proposed by Becker and Döring [1] in 1930s. Since it is known that the nucleus has a size on the nm order, i.e., that nucleus includes $2 - 10^6$ particles or repeating units, we call it a "nano-nucleus." However, it has been too difficult to observe directly nano-nucleation because of the technical issues.

So far, observations with an optical microscope (OM) or a bubble chamber have mainly been done to trace macroscopic nucleation at a scale larger than 1 μ m (= macro-crystal). In these studies, it is assumed that both nano-nucleation and macro-crystallization are predominantly controlled by the "critical nano-nucleation," which is an important but unsolved problem. In the CNT, the critical nano-nucleation corresponds to the activated state in the free energy of the nucleation process.

We succeeded in direct observation of nanonucleation by small-angle X-ray scattering (SAXS) for the first time in 2003 [2] and obtained the size distribution f(N,t) of nano-nuclei in 2007 [3], where N is the size of a nucleus counted by the number of repeating units and t is crystallization time. But these results were obtained only for one case of the degree of supercooling, ΔT . In the nucleation study, it is important to obtain dependence of nano-nucleation on ΔT , as ΔT is proportional to the free energy of melting which is the driving force of nucleation. ΔT is defined as $\Delta T = T_{\rm m}^{\circ} - T_c$, where $T_{\rm m}^{\circ}$ is the equilibrium melting temperature and T_c is crystallization temperature.

In this study, we obtained dependence of nanonucleation on ΔT and then compared it with the dependence of macro-crystallization on ΔT to confirm the predominant contribution of the critical nanonucleation in macro-crystallization. Second, we observed the "mass distribution function $Q(N,t) \propto$ Nf(N,t)" directly. The Q(N,t) should exhibit the real image of nano-nucleation, which cannot be described by f(N,t). Finally, we proposed a new nucleation theory by introducing Q(N,t) in order to solve the serious problem in CNT that the kinetic equation with respect to f(N,t) does not satisfy the mass conservation law [4].

We used polyethylene (PE) (NIST, SRM1483a, M_n = 32 × 10³, M_w/M_n =1.1, T_m° = 139.5°C), where M_n and M_w are the number-average and the weightaverage molecular weight, respectively, and M_w/M_n is the index of dispersion. The nucleating agent of sodium 2,2'-methylene-bis-(4,6-di-t-butylphenylene) phosphate (ADEKA Corp., NA-11SF) was mixed with PE. The sample was melted at 160°C for 5 min within a thin evacuated glass capillary (ϕ 1mm) and then isothermally crystallized at $\Delta T = 10.5 - 13.0$ K. The SAXS experiment was carried out at beamline **BL40B2**. The range of the scattering vector (*q*) was (7-214) × 10⁻³ Å⁻¹ and the wavelength (λ) was 1.50 Å.

Figure 1 shows typical f(N,t) against *t* as a parameter of ΔT for $N = 2.2 \times 10^4$ [rep. unit] which is larger than the size of a critical nano-nucleus (N^* = 450 [rep. unit]). The f(N,t) was obtained by applying an "extended Guinier plot method" to excess scattering intensity $I_X(q,t)$ which was obtained by subtracting background intensity [3]. In the figure, it was found that f(N,t) increases rapidly with an increase of *t* for larger ΔT , while it increases slowly for smaller ΔT . We determined τ for each ΔT by the onset time of the linearly increasing f(N,t), where τ is the induction time for nucleation.

The inverse of τ is plotted as a function of ΔT^{-1} in Fig. 2. This indicates the relationship as $\tau^{-1} \propto$ $\exp[-\gamma/\Delta T]$ (1), where γ is a constant. Thus, it is clear that nano-nucleation does not occur when ΔT becomes significantly small. This indicates that the "induction period" of crystallization is not controlled by a so-called "spinodal decomposition" process [5] but rather by nucleation process. ΔT dependences of nucleation rate (I) of a macro-crystal and "net flow (j)" of nano-nucleation are also shown in Fig. 2. I is defined by the variation of the number of macrocrystals per unit volume and time. We have observed I of macro-crystals larger than 1 μ m by OM and obtained the experimental formula, $I \propto \exp[-C'/\Delta T]$ (2), where C' is a constant. When the critical nanonucleation is the rate-determining process, it is well known in CNT that **j** is given by $\mathbf{j} \propto \exp[-\Delta G^*(N^*)/kT]$ $\propto \exp[-C/\Delta T]$ (3), where $\Delta G^*(N^*)$ is the free energy of

Fig. 1. Plots of f(N,t) against t as a parameter of ΔT for N, 2.2 × 10⁴ [rep. unit] > N*. It clarified that nano-nucleation becomes impossible as ΔT decreases.

Fig. 2. Plots of τ^{-1} , *I* and theoretical *j* against ΔT^{-1} . The observed *N* of nano-nucleus was $N = 2.2 \times 10^4$ [rep. unit]>*N** and the lateral size of macro-crystal was larger than 1 µm. Since $\tau^{-1} \propto I \propto j$, it clarified that critical nano-nucleation mainly controls macro-crystallization.

critical nano-nucleation, $\Delta G^*(N^*) \propto \Delta T^{-1}$ for twodimensional nucleus, kT is thermal energy, and *C* is a constant. It is to be noted that **j** is the theoretical formula. Since $\tau^{-1} \propto I \propto \mathbf{j}$ (4) was obtained, it clarified that the critical nano-nucleation mainly controls the macro-crystallization. Thus it is concluded that OM is a useful tool for convenient routine work in studies of nucleation.

Plots of $\log Q(N,t)$ (right axis) and $\log f(N,t)$ (left axis) against $\log N$ as a parameter of t for $\Delta T = 10.5$ K are shown in Fig. 3. It was found that f(N,t) decreased monotonously but Q(N,t) showed a minimum with a magnitude similar to N^* and increased with an increase of N for each t.

We plotted Q(N,t) against *N* as a parameter of *t* in Fig. 4. As Q(N,t) showed a minimum with the similar magnitude of N^* for each *t*, it was clearly shown that the critical nano-nucleation is the activated state in the

Fig. 3. Plots of $\log Q(N,t)$ (left axis) and $\log f(N,t)$ (right axis) against $\log N$ as a parameter of t for $\Delta T = 10.5$ K.

nucleation process. f(N,t) cannot describe this entire situation at all. Therefore, we focus the discussion on phenomena in the range of $N \ge N^*$. Q(N,t) had a maximum and became to 0 at N_{max} with the increase of N for each t, where N_{max} is the maximum size of N for a finite time. We obtained N_{max} for each t by extrapolating observed f(N,t) to larger N. N_{max} increases with as t increases. The maximum of Q(N,t)increased and shifted to larger N with the increase of t. Consequently, we found that the total mass of nanonuclei increases for $N \ge N^*$. Our finding indicates that the crystallinity increases with the increase in t in the nucleation process. We showed that Q(N,t) satisfies the mass conservation law which is demanded by the basic equation of a stochastic process [4].

Fig. 4. Plots of Q(N,t) against N as a parameter of t for $\Delta T = 10.5$ K. The total mass of nano-nuclei for $N \ge N^*$ increases. This behavior indicates that crystallinity increases with the increase of t in the nucleation process.

Kiyoka Okada^a, Sono Sasaki^b and Masamichi Hikosaka^{c,*}

- ^a Collaborative Research Center, Hiroshima University ^b SPring-8 / JASRI
- ^c Graduate School of Integrated Arts and Sciences, Hiroshima University
- *E-mail: hikosaka@hiroshima-u.ac.jp

References

- [1] V.R. Becker, W. Döring: Ann. Phys. 24 (1935) 719.
- [2] M. Hikosaka et al.: J. Macromol Sci. Phys. B42 (2003) 847.
- [3] K. Okada et al.: Polymer 48 (2007) 382.
- [4] K. Okada, K. Watanabe, A. Toda, S. Sasaki, K. Inoue,
- M. Hikosaka: Polymer 48 (2007) 1116.
- [5] M. Imai et al.: Polymer 33 (1992) 4457.