

Observation of Li cation encapsulated in C₆₀ fullerene cage by single-crystal charge density analysis

C₆₀ fullerene is the most promising nanocarbon material for a wide range of practical applications owing to its high productivity and flexible electrical and chemical properties. The encapsulation of atoms and molecule in C₆₀ fullerene is a promising method of developing application field. Various endohedral C₆₀ fullerenes have been synthesized since the discovery of the first metallofullerene La@C60 in 1985. The macroscopic synthesis and molecular structures of the gas molecule endohedral C_{60} , $H_2@C_{60}$ and $Ar@C_{60}$, have been reported [1,2]. The physical and chemical properties of H2@C60 and Ar@C60 are similar to those of empty C₆₀. The encapsulation of a metal atom is expected to change the properties of C₆₀ by metal ionization. However, the isolation and structure determination of $M@C_{60}$ (M: metal) have been precluded by the insolubility and high reactivity of M@C₆₀.

Recently, the bulk synthesis and complete isolation of Li@C₆₀ have been successfully carried out by researchers of idealstar Inc. and Tohoku University. A single crystal of $[Li@C_{60}](SbCI_6)$ with typical dimensions of $60 \times 40 \times 10 \ \mu m^3$ was grown by the diffusion of CS₂ vapor into solution. However, it is generally difficult to determine the position of a Li cation from small crystals by X-ray diffraction analysis. We observed an encapsulation of a Li cation inside a C_{60} cage by a single-crystal X-ray diffraction analysis of $[Li@C_{60}](SbCI_6)$ crystals at **BL02B1** beamline [3].

The single-crystal X-ray diffraction experiment was performed using a large cylindrical imaging plate camera [4]. The camera rapidly collects diffraction peaks over a wide diffraction angle range $(2\theta < 145^{\circ})$

using an imaging plate with a wide dynamic range of 10^6 and a three-axis goniometer (-130 < ω < 220°, $-5 < \chi < 60^{\circ}, -180 < \phi < 360^{\circ})$. The wavelength of X-rays used is 0.35 Å. The sample temperature was controlled using a He/N2 gas flow system. The [Li@C₆₀](SbCl₆) crystal had a twinned monoclinic structure below room temperature. A phase transition from a twinned monoclinic structure to a single-domain orthorhombic structure was observed at ~320 K. The crystal structure of the orthorhombic $[Li@C_{60}](SbCl_6)$ was determined at 370 K (space group Amm2, a = 12.30 Å, b = 9.95 Å, c = 29.05 Å, V = 3555 Å³). The orientations of C₆₀ cages and the position of a Li cation inside a cage were determined on the basis of charge density distributions by the maximum entropy method (MEM).

A charge density map for a [Li@C₆₀]⁺ is shown in Fig. 1(a). Two charge density peaks (red arrows) inside the C₆₀ cage were regarded as disordered Li cation occupying two off-centered sites that are crystallographically equivalent. This off-centered structure is guite different from the on-centered structure of the encapsulated gas molecule inside the C_{60} cage [1,2]. The distance from the center of the C₆₀ cage to the Li cation is 1.34 Å, which is close to the theoretically predicted values. The inhomogeneous charge density distribution of the C_{60} cage (shown as green in Fig. 1(a)) demonstrates the ratchet-type disorder of the cage with four orientations. In any orientation of C_{60} fullerene, the Li cation lies in the vicinity of one of the six-membered rings (Fig. 1(b)) of the cage. This suggests the presence of an attractive force exerted between the six-membered ring and the Li cation.

Fig. 1. (a) MEM charge density map of $\text{Li}@C_{60}$ cation in $[\text{Li}@C_{60}](\text{SbCl}_6)$ crystal at 370 K. A 0.25 $e/\text{Å}^3$ equi-charge density surface for a Li cation inside a C_{60} cage is shown as magenta. A 2.0 $e/\text{Å}^3$ equi-charge density surface is shown in green. The charge density at the two peaks for the Li cation (red arrows) is 0.38 $e/\text{Å}^3$. (b) Geometrical relationships between $\text{Li}@C_{60}$ cation and adjacent SbCl₆ anion (orange). The structure of one molecular orientation for a $\text{Li}@C_{60}$ cation extracted from a disordered structure is shown. The nearest Li-Cl distance is 5.58 Å (red dashed line).

An electrostatic attractive interaction between a Li cation and SbCl₆ anions should be crucial to determining the position of the Li cation in the C₆₀ cage. Figure 1(b) shows the arrangement of an SbCl₆ anion around a Li@C₆₀ cation. The Li cation is close to a negatively charged Cl atom of the SbCl₆ anion. The electrostatic attractive interaction between Li⁺ and Cl⁻ through the cage should localize the Li cation at the two sites. The restriction of the free rotation of the C₆₀ cage even at a high temperature of 370 K is regarded as a result of the attractive interaction between the localized Li cation and the six-membered rings.

The three-dimensional molecular arrangement of the $[Li@C_{60}]^+$ and $SbCl_6^-$ units (Fig. 1(b)) constructs the layered crystal structure, as shown in Fig. 2. The slab structure formed by two-dimensional arrays of the $[Li@C_{60}](SbCl_6)$ units (Fig. 1(b)) perpendicular to the *c*-axis is clearly seen. In the slab, the firstand second-nearest intermolecular distances of the $Li@C_{60}$ cations are 9.95 and 10.03 Å, respectively. The shorter distance (9.95 Å) between the adjacent $Li@C_{60}$ cations is almost exactly the same as that of the close-packed pristine fcc C_{60} structure, whereas the interslab distance of the $Li@C_{60}$ cations is 10.30 Å. The positively charged $\text{Li}@C_{60}$ ions are periodically assembled on the two-dimensional negatively charged sheets of SbCl_6 ions by the electrostatic attractive force between the Li cation and the Cl atom. This unique structural feature may exhibit interesting solid-state properties. The ¹³C NMR spectrum of $[\text{Li}@C_{60}](\text{SbCl}_6)$ in solution shows that the Li cation is rapidly moving inside the C_{60} cage. These facts suggest that the position of the Li cation can be varied and controlled by adjusting the external field outside the C_{60} cage. Such position control by an external field can be widely used in electronics applications such as in single molecular switches and ferroelectric sheets.

The most striking feature of $Li@C_{60}$ revealed in the present study, which has never been observed in conventional metallofullerenes, is the extremely high tendency of $Li@C_{60}$ to form ion-pair states (species) such as $[Li@C_{60}](SbCl_6)$. $Li@C_{60}$ can only be stabilized significantly under ambient condition when it coexists with an appropriate counteranion. The present methodology for the isolation and crystallization of $M@C_{60}$ can be widely applied to the existing Groups 2, 3, and 4 and all lanthanide metallofullerenes such as $La@C_{60}$ and $Gd@C_{60}$ [5].

Fig. 2. Layered crystal structure of $[Li@C_{60}](SbCl_6)$. Slabs formed by two-dimensional arrays of $[Li@C_{60}](SbCl_6)$ units (Fig. 1(b)) are stacked along the *c*-axis. Three slabs (one layer in dense color and two outer layers in light colors) are shown in the figure.

Shinobu Aoyagi, Eiji Nishibori and Hiroshi Sawa*

Department of Applied Physics, Nagoya University

*E-mail: hiroshi.sawa@cc.nagoya-u.ac.jp

References

 Y. Kohama *et al.*: Phys. Rev. Lett. **103** (2009) 073001.
K. Yakigaya *et al.*: New. J. Chem. **31** (2007) 973.
S. Aoyagi, E. Nishibori, H. Sawa, K. Sugimoto, M. Takata, Y. Miyata, R. Kitaura, H. Shinohara, H. Okada, T. Sakai, Y. Ono, K. Kawachi, K. Yokoo, S. Ono, K. Omote, Y. Kasama, S. Ishikawa, T. Komuro and H. Tobita: Nature Chem. **2** (2010) 678.
K. Sugimoto *et al.*: AIP Conf. Proc. **1234** (2010) 887.
R.D. Bolskar *et al.*: J. Am. Chem. Soc. **125** (2003) 5471.