

Multiple-decker phthalocyaninato dinuclear terbium (III) single-molecule magnets with dual-magnetic relaxation processes

In principle, a single spin can be used as a 'bit' of information to prepare high-density storage and quantum computing devices [1]. Quantum tunneling of the magnetization (QTM) between double well potentials, which is a prominent, characteristic property of single molecule magnets (SMMs), underpins this concept. SMMs behave like magnets with frozen spins, and a potential exists across two energy barriers at low temperatures, known as the blocking temperature $(T_{\rm B})$. In the case of 3*d* cluster SMMs, an easy axistype magnetic anisotropy, which is represented by a negative zero-field splitting constant (D), occurs due to magnetic interactions among high-spin 3d metal ions in the clusters. Researchers have been studying complexes with higher values of $T_{\rm B}$ than that of a wellknown Mn cluster. In recent years, lanthanoid(III)phthalocyaninato (Ln(III)-Pc) sandwich complexes have been shown to be SMMs, which originates from the ligand field (LF), and researchers have utilized their QTM and magnetic relaxation behavior [2]. Ln(III)-Pc molecules showing SMM behavior have significantly large axial magnetic anisotropies, which occur by a different mechanism than those for known 3d metal cluster SMMs. On the other hand, in the case of Ln(III) SMMs, the LF of the Ln³⁺ ion controls the anisotropy. The LF potential around a Tb^{3+} ion $(4f^8)$ with a total angular momentum (J) of 6 splits the ground multiplet so that the lowest sublevel has the largest J_z value $(|J_z| = 6$, corresponding to up/down spin states) and large energy gaps to the remaining sublevels. Being able to control the QTM of Ln(III)-Pc SMMs will make it possible to design new spintronics devices.

In this study, we report the molecular structure and magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes: quadruple-decker $\{[Ln(obPc)_2]Cd[Ln(obPc)_2]\}$ (1:Ln = Tb³⁺, 2:Ln = Dy³⁺), triple-decker Ln₂(obPc)₃ (3:Ln = Tb³⁺, 4:Ln = Dy³⁺), double-decker Ln(obPc)₂ (5:Ln = Tb³⁺, 6:Ln = Dy³⁺), and quintuple-decker {[Tb(obPc)₂]Cd(obPc) Cd[Tb(obPc)₂]} (7). Our work shows that the SMM/ QTM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in controlled spatial arrangements of lanthanides ions [3].

In order to control the spin orientation in the molecules, we designed **1–7** so that the two Ln^{3+} ions are along the anisotropy axis (Fig. 1). The SMM behavior of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb^{3+} and Dy^{3+}) with large energy barriers and slow-relaxation behavior were explained by using X-ray crystallography (Figs. 2(a) and 2(b): **BL02B1** and **BL40XU** beamlines) and static and

dynamic susceptibility measurements [3]. There was a decrease in the in-phase (χ_{M} ') and out-of-phase (χ_{M} ") peaks in different *T* ranges, which were dependent on the frequency (*f*), indicating that dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb³⁺ and Dy³⁺) are SMMs. In micro-SQUID experiments, quadrupledecker **1** and **2** clearly exhibited SMM behavior (Fig. 2(c)) [3].

Dinuclear Tb(III)-Pc multiple-decker SMMs 1, 3, and 7 exhibited dual magnetic relaxation processes (Fig. 3) [3]. These magnetic relaxation processes have *T*-independent (τ_1) and *T*-dependent (τ_2) regimes in the low T region. The dual magnetic relaxation behavior was observed not only for discreet dinuclear Tb(III)-Pc complexes but also for the spatially closed Tb(III)-Pc double-decker complex 5 [4]. On the other hand, mononuclear system 5a, where the effects of intermolecular interactions in 5 have been eliminated, exhibited only a single magnetic relaxation process [4]. In the case of the dinuclear Tb(III)-Pc complexes, the value of $T_{\rm B}$ and the distance between Tb³⁺ ions follows the strength of the dipole-dipole interactions (D_{ii}) , and $T_{\rm B}$ shifted to the high-T side, indicating that the Tb³⁺-Tb³⁺ interactions affect the spin dynamics (Fig. 2(d)). Moreover, the presence of the dual magnetic relaxation processes is related to the distance between Tb3+ ions sites in the dinuclear complexes (Fig. 3).

In other words, the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb³⁺ ions in the dinuclear systems [3]. The above results demonstrate that even weak exchange interactions can have a large influence on the quantum properties of Ln(III)-Pc type SMMs. Two magnetic relaxation processes occur under the

Fig. 1. Schematic illustration of sequential synthetic routes for multiple-decker phthalocyaninato dinuclear lanthanoid (III) single-molecule magnets [3].

Multiple-decker phthalocyaninato dinuclear terbium (III) single-molecule magnets with dual-magnetic relaxation processes

In principle, a single spin can be used as a 'bit' of information to prepare high-density storage and quantum computing devices [1]. Quantum tunneling of the magnetization (QTM) between double well potentials, which is a prominent, characteristic property of single molecule magnets (SMMs), underpins this concept. SMMs behave like magnets with frozen spins, and a potential exists across two energy barriers at low temperatures, known as the blocking temperature $(T_{\rm B})$. In the case of 3*d* cluster SMMs, an easy axistype magnetic anisotropy, which is represented by a negative zero-field splitting constant (D), occurs due to magnetic interactions among high-spin 3d metal ions in the clusters. Researchers have been studying complexes with higher values of $T_{\rm B}$ than that of a wellknown Mn cluster. In recent years, lanthanoid(III)phthalocyaninato (Ln(III)-Pc) sandwich complexes have been shown to be SMMs, which originates from the ligand field (LF), and researchers have utilized their QTM and magnetic relaxation behavior [2]. Ln(III)-Pc molecules showing SMM behavior have significantly large axial magnetic anisotropies, which occur by a different mechanism than those for known 3d metal cluster SMMs. On the other hand, in the case of Ln(III) SMMs, the LF of the Ln³⁺ ion controls the anisotropy. The LF potential around a Tb^{3+} ion $(4f^8)$ with a total angular momentum (J) of 6 splits the ground multiplet so that the lowest sublevel has the largest J_z value $(|J_z| = 6$, corresponding to up/down spin states) and large energy gaps to the remaining sublevels. Being able to control the QTM of Ln(III)-Pc SMMs will make it possible to design new spintronics devices.

In this study, we report the molecular structure and magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes: quadruple-decker $\{[Ln(obPc)_2]Cd[Ln(obPc)_2]\}$ (1:Ln = Tb³⁺, 2:Ln = Dy³⁺), triple-decker Ln₂(obPc)₃ (3:Ln = Tb³⁺, 4:Ln = Dy³⁺), double-decker Ln(obPc)₂ (5:Ln = Tb³⁺, 6:Ln = Dy³⁺), and quintuple-decker {[Tb(obPc)₂]Cd(obPc) Cd[Tb(obPc)₂]} (7). Our work shows that the SMM/ QTM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in controlled spatial arrangements of lanthanides ions [3].

In order to control the spin orientation in the molecules, we designed **1–7** so that the two Ln^{3+} ions are along the anisotropy axis (Fig. 1). The SMM behavior of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb^{3+} and Dy^{3+}) with large energy barriers and slow-relaxation behavior were explained by using X-ray crystallography (Figs. 2(a) and 2(b): **BL02B1** and **BL40XU** beamlines) and static and

dynamic susceptibility measurements [3]. There was a decrease in the in-phase (χ_{M} ') and out-of-phase (χ_{M} ") peaks in different *T* ranges, which were dependent on the frequency (*f*), indicating that dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb³⁺ and Dy³⁺) are SMMs. In micro-SQUID experiments, quadrupledecker **1** and **2** clearly exhibited SMM behavior (Fig. 2(c)) [3].

Dinuclear Tb(III)-Pc multiple-decker SMMs 1, 3, and 7 exhibited dual magnetic relaxation processes (Fig. 3) [3]. These magnetic relaxation processes have *T*-independent (τ_1) and *T*-dependent (τ_2) regimes in the low T region. The dual magnetic relaxation behavior was observed not only for discreet dinuclear Tb(III)-Pc complexes but also for the spatially closed Tb(III)-Pc double-decker complex 5 [4]. On the other hand, mononuclear system 5a, where the effects of intermolecular interactions in 5 have been eliminated, exhibited only a single magnetic relaxation process [4]. In the case of the dinuclear Tb(III)-Pc complexes, the value of $T_{\rm B}$ and the distance between Tb³⁺ ions follows the strength of the dipole-dipole interactions (D_{ii}) , and $T_{\rm B}$ shifted to the high-T side, indicating that the Tb³⁺-Tb³⁺ interactions affect the spin dynamics (Fig. 2(d)). Moreover, the presence of the dual magnetic relaxation processes is related to the distance between Tb3+ ions sites in the dinuclear complexes (Fig. 3).

In other words, the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb³⁺ ions in the dinuclear systems [3]. The above results demonstrate that even weak exchange interactions can have a large influence on the quantum properties of Ln(III)-Pc type SMMs. Two magnetic relaxation processes occur under the

Fig. 1. Schematic illustration of sequential synthetic routes for multiple-decker phthalocyaninato dinuclear lanthanoid (III) single-molecule magnets [3].