

SPring-8 Research Frontiers 2013

CONTENTS

Pretace	5
Scientific Frontiers	7
Life Science: Structural Biology	8
Crystal structure of the trypanosome cyanide-insensitive alternative oxidase	· 10
Structure-based drug design of small-molecule Ras inhibitors having anti-tumor activity	· 12
Crystal structure of bacterial selenocysteine synthase SelA in complex with tRNA ^{Sec} reveals the selenocysteine formation mechanism in bacteria Y. Itoh and S. Yokoyama	14
Molecular recognition mechanism of peroxisomal targeting signal-2, PTS2 D. Pan and H. Kato	· 16
Crystal structures of innate immune RNA receptor human TLR8	· 18
Crystal structure of Na ⁺ , K ⁺ -ATPase with bound sodium ion C. Toyoshima, H. Ogawa and R. Kanai	20
Rotation mechanism of V ₁ -ATPase K. Suzuki and T. Murata	22
Crystal structure of multidrug transporter MATE	24
Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases andits catalytic significance J. Nyírenda, S. Matsumoto and D. Kohda	· 26
Life Science: Medical Biology	28
Wing-beat mechanism of insect revealed by ultrafast X-ray movies	. 30
Irregular organization in the human chromosomes revealed by X-ray scattering	. 32
Talbot-defocus multiscan tomography to study the lacuno-canalicular network in mouse bone	34
NRVS definition of the non-heme Fe ^{IV} =O intermediate in a halogenase and its control of reactivity	· 36

Materials Science: Structure	38
Laser pump and synchrotron radiation probe microdiffraction of $Ge_{10}Sb_{90}$ phase-change nanometer-sized dots N. Yamada, T. Matsunaga and S. Kímura	· 40
Complex host-guest structure of calcium phase VII at high pressure	42
The origin of antiferroelectricity in PbZrO ₃	· 44
Imaging chirality-domain morphology in racemic mixed crystal of CsCuCl ₃	46
Clarification of proton-conducting pathway in a highly oriented crystalline	· 48
Characterizing self-assembled nanoparticles employed in drug delivery	50
Materials Science: Electronic & Magnetic Properties	52
Bias-voltage application in a hard X-ray photoelectron spectroscopic study of the interface states at oxide/Si(100) interfaces Y. Yamashita, T. Chikyow and K. Kobayashi	· 54
Electric field-driven chemical reaction at the buried FeCo/MgO interface for potential use in low power spintronics devices F. Bonell and Y. Suzukí	56
Operando soft X-ray emission spectroscopy of iron phthalocyanine-basedoxygen reduction catalysts H. Niwa, Y. Harada and M. Oshima	58
Orbital orientation of the $4f$ ground state in $CeCu_2Si_2$	· 60
Quantum compass interaction in post-perovskite iridate CaIrO ₃	62
Spin and orbital magnetization loops obtained using magnetic Compton scattering	· 64
Chemical Science ······	• 66
Programmed arraying of metal complexes in a supramolecular system: Stacked assemblyof porphyrin and phthalocyanine K. Tanaka and Y. Yamada	68
Compton scattering confirmation of the anomalous ground state of the electrons in nano-confined water G. F. Reiter, A. Deb and S. J. Paddison	· 70

	A metallic phase of elemental chalcogens: One-dimensional crystals	72
	A new class of aluminum-based interstitial hydrides, Al_2CuH_x	· 74
	Synchrotron infrared spectroscopy of water on polyelectrolyte brush surface	76
SACLA	Sequential multiphoton multiple ionization of xenon atoms by intense X-ray free-electron laser pulses from SACLA H. Fukuzawa, K. Motomura and K. Ueda	78
SACLA	Attosecond X-ray interaction with core-hole atoms K. Tamasaku	80
Ea	rth & Planetary Science	• 82
	Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism T. Kawamoto, M. Kanzaki and K. Mibe	84
	A magma "traffic jam" between lithosphere and asthenosphere	· 86
	Sound velocity of hexagonal close-packed iron up to core pressures	88
	Decomposition of Fe ₃ S above 250 GPa	90
	Generation of pressure over 1 Mbar in the Kawai-type multianvil apparatus D. Yamazaki	92
En	vironmental Science	94
	Environmental and biological influence on seasonal fluctuations of sulfur in a giant clam shell T. Yoshimura	96
	Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on results of the speciation analysis of aerosols collected in Japan Y. Takahashi	98
	Differences between immobilizations of arsenite and arsenate by calcite	100
	Thermochemical behavior of lead during formation of chlorinated aromatics determinedby X-ray absorption spectroscopy	102

Industrial Applications	104
Soft X-ray spectromicroscopic study on graphene toward device applications	106
Hydration structure around CO_2 captured in aqueous amine solutions observed by high energy X-ray scattering H. Deguchí, N. Yamazakí and Y. Kameda	108
$\begin{tabular}{ll} \it{Operando} \ XAFS \ study \ of \ Cu/CeO_2 \ for \ automotive \ three-way \ catalysts \ \cdots \\ \it{Y. Nagai} \end{tabular}$	110
Visualization of dual-phase structure in duplex stainless steel	112
Tackling the safety issue of lithium ion batteries at Kyoto University & NEDO beamline	114
Nuclear Physics	116
LEPS and LEPS2 beamlines - Overview	116
Search for the K^-pp bound state using the photon induced reaction at BL33LEP	118
Accelerators & Beamlines Frontiers	120
Accelerators & Beamlines Frontiers SPring-8	120
SPring-8	121
SPring-8 Beam Performance	······ 121 ····· 127
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic	121 127 127
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments High repetition rate X-ray chopper for time-resolved measurements	121 127 127
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments	121 127 127 129
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments High repetition rate X-ray chopper for time-resolved measurements SACLA	121 127 127 129
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments High repetition rate X-ray chopper for time-resolved measurements SACLA Beam Performance	121 127 127 129
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments High repetition rate X-ray chopper for time-resolved measurements SACLA Beam Performance	121 127 127 129
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments High repetition rate X-ray chopper for time-resolved measurements SACLA Beam Performance New Apparatus, Upgrades & Methodology Facility Status	121 127 127 129 131 133
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments High repetition rate X-ray chopper for time-resolved measurements SACLA Beam Performance New Apparatus, Upgrades & Methodology Facility Status SPring-8 Facility Status	
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments High repetition rate X-ray chopper for time-resolved measurements SACLA Beam Performance New Apparatus, Upgrades & Methodology Facility Status	
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments High repetition rate X-ray chopper for time-resolved measurements SACLA Beam Performance New Apparatus, Upgrades & Methodology Facility Status SPring-8 Facility Status	
SPring-8 Beam Performance New Apparatus, Upgrades & Methodology New protein crystal mounting method using humidity control and hydrophilic glue coating to improve X-ray diffraction experiments High repetition rate X-ray chopper for time-resolved measurements SACLA Beam Performance New Apparatus, Upgrades & Methodology Facility Status SPring-8 Facility Status SACLA Facility Status	121

Note: The principal publication(s) concerning each article is indicated with all author's names in italics in the list of references.