SPring-8 Besearch Frontiers 2013

Operando soft X-ray emission spectroscopy of iron phthalocyanine-based oxygen reduction catalysts

Polymer electrolyte fuel cells (PEFCs) have attracted much attention as clean and high efficient electrochemical devices for energy conversion. Conventionally, Pt-based materials are used as cathode catalysts for slow oxygen reduction reaction (ORR). Alternative ORR catalysts of low cost and high activity are desired because Pt is expensive and their resources are limited. Carbon-based materials are expected to be cathode catalysts alternative to conventional Pt catalysts for PEFCs. Carbonbased catalysts are usually synthesized by pyrolyzing precursors such as metal-phthalocyanine or metalporphyrine with/without other carbon resources such as resins [1,2]. Accordingly, carbon-based catalysts are generally composed of C, N, O, H, and 3d transition metals. Thus, elucidation of ORR active sites is strongly required for further improving the ORR activity. There are two major candidates for the ORR active site, i.e. TM-N_x sites (TM: Fe or Co, x: 2 or 4), and nitrogen functional groups. In order to discuss the active site of carbon-based catalysts, their electronic structure has been investigated under ex situ conditions [2]. However, to further explore the ORR mechanism, study in operando condition is strongly required.

We have developed a novel electrochemical cell system for *operando* soft X-ray emission (SXE) spectroscopy of cathode catalysts for polymer electrolyte fuel cells at **BL07LSU** [3]. Incorporating a membrane electrode assembly (MEA) on a vacuum compatible flange, the system enables direct observation of element-specific electronic structure that changes with gaseous and potential conditions. SXE essentially provides element specific information involving transition within a particular element and

58

is sensitive to valence electronic states of transition metals and light elements due to dipole-allowed transition at *L*-edge of transition metals and at *K*-edge of light elements.

A carbon-based catalyst was prepared by pyrolyzing a mixture of iron phthalocyanine and phenolic resin using a multi-step pyrolysis method (multi-FePc/PhRs). 0.4 mg·cm⁻² of PtRu/C (TKK) and 4 mg·cm⁻² of multi-FePc/PhRs were used as the anode and cathode catalysts of the MEA, respectively.

Operando SXE measurements were performed at **BL07LSU** using an ultrahigh resolution SXE spectrometer [4]. The gas flow rates were the same as those for CV measurements except for the introduction of N₂ and O₂ to the cathode with the rates of 45 and 5 mL·min⁻¹, respectively.

Figure 1 shows a schematic view of the MEA cell system. The vacuum environment is separated by a 150 nm-thick SiC membrane from the MEA in the atmosphere. An O-ring, SiC membrane, PTFE gasket sheets with Au foils as current collectors, and the MEA are sandwiched between a vacuum flange and the MEA cell. The electric potential between both electrodes can be manipulated by a Potentio/Galvanostat.

Figure 2 shows the H₂-O₂ fuel cell polarization plots obtained by measuring stable current densities at each potential. The gas flow rates were regulated to 10 mL·min⁻¹ H₂ flow to the anode and 50 mL·min⁻¹ N₂ or a mixture of 40 mL·min⁻¹ N₂ and 10 mL·min⁻¹ O₂ flow to the cathode. Only H₂ was humidified. The shape of the polarization plots of the MEA cell was similar to that of a standard fuel cell, demonstrating that the system can stably produce electricity by H₂ and O₂ gases. From Fig. 2, working voltage of the

Fig. 1. Schematic view of the MEA cell for operando SXE measurements.

fuel cell was selected to 0.4 V. Also, 1.0 V, which is slightly above the open circuit voltage was chosen for SXE measurements.

The excitation energy for Fe 2p SXE was tuned to the Fe L_3 resonance at 710.0 eV. Figure 3 shows a comparison of operando Fe 2p SXE spectra of the MEA sample under various gaseous and operating conditions. Broad SXE features appear below an intense elastic line at 710.0 eV, reflecting energy loss due to Fe 3d-related states. The appearance of the energy-loss feature around 1.5 eV below the elastic peak is characteristic for iron species with planar ligand coordination, rather than typical iron oxides having larger dd excitation energies. The intensity of the 1.5 eV peak is significantly reduced when N₂ gas in the cathode is replaced by the mixture of N_2 and O_2 gases (lower panel of Fig. 3(b)). This change implies that oxygen may adsorb on an iron site with planar ligand coordination, such as Fe-N_x embedded into the sp² carbon network [1] considering the structure of the precursor.

As shown in upper panel of Fig. 3(b), it is noted that the shape of the Fe 2p SXE spectra does not change with the cell voltage under both gas conditions. This result can be explained by either of the following; that the Fe sites in the multi-FePc/PhRs catalyst are not ORR active because they adsorb oxygen too strongly to release oxygen, or the Fe sites are still ORR active where the rate-determining step of ORR is desorption of intermediates (such as H_2O_2) and/or reaction product (H_2O). However, it is difficult to exclude either of the above interpretations only using the present SXE results.

The experimental system developed in this study can also be applied to observe the electronic structure

Fig. 2. H₂-O₂ fuel cell polarization plots.

of solid-gas and solid-liquid interfaces under potential control, such as PEFC anode catalysts, metal-air battery electrodes and lithium-ion battery electrodes.

Fig. 3. (a) Operando Fe 2p SXE spectra of the multi-FePc/PhRs catalyst. Dotted lines are raw data. Solid lines are smoothed data as an eye guide. (b) Smoothed Fe 2p SXE spectra compared with 1.0 V (lower panel) and the same gas conditions (upper panel). Black solid lines are difference spectra.

Hideharu Niwa^{a,b,*}, Yoshihisa Harada^{a,b} and Masaharu Oshima^b

 ^a Institute for Solid State Physics, The University of Tokyo
^b Synchrotron Radiation Research Organization, The University of Tokyo

*E-mail: hniwa@issp.u-tokyo.ac.jp

References

- [1] M. Lefèvre et al.: Science **324** (2009) 71.
- [2] H. Niwa et al.: J. Power Sources 223 (2013) 30.
- [3] H. Niwa, H. Kiuchi, J. Miyawaki, Y. Harada, M. Oshima,

59

- Y. Nabae, T. Aoki: Electrochem. Commun. 35 (2013) 57.
- [4] Y. Harada et al.: Rev. Sci. Instrum. 83 (2012) 013116.