

SPring-8/SACLA Research Frontiers 2015

CONTENTS

Preface				
Scientific Frontiers 7				
	Structural Biology of the Sodium Pump	8		
	High-Pressure Research on Superconductivity at SPring-8	12		
Lit	fe Science			
SACLA	Structural Biology: Radiation damage-free structure of photosystem II at 1.95 Å resolution revealed by femtosecond X-ray pulses at SACLA <i>JR. Shen, F. Akita and M. Suga</i>	16		
	Structural Biology: Energy transfer pathways revealed from structural analysis of the plant PSI-LHCI supercomplex M. Suga and JR. Shen	18		
	Structural Biology: Visualization of agonistic and inhibitory DNA recognition by Toll-like receptor 9 <i>T. Shimizu</i>	20		
	Structural Biology: Crystal structures of the human adiponectin receptors H. Tanabe, T. Yamauchi, T. Kadowaki and S. Yokoyama	22		
	Structural Biology: Absolute slowness encoded in the circadian clock protein KaiC J. Abe, A. Mukaiyama and S. Akiyama	24		
SACLA	Crystallography Technique: Grease matrix method for serial femtosecond crystallography using XFELs M. Sugahara, E. Nango and S. Iwata	26		
SACLA	Crystallography Technique: De novo phasing with serial femtosecond crystallography at SACLA T. Nakatzu, K. Yamashita and S. Iwata	28		
	Cell Motility: X-ray diffraction patterns from flagellar axonemes of <i>Chlamydomonas</i> S. Toba and K. Oiwa	30		
	Respiratory Medicine : Imaging the airway surface to test Cystic Fibrosis treatments K. Morgan, M. Donnelley, D. Parsons and K. Siu	32		
	Dentistry: Distribution analyses of trace metallic elements in oral mucosal tissues using high-energy SR-XRF M. Uo	34		
	Evolution: Structural mouthpart interaction evolved already in the earliest lineages of insects A. Blanke and R. Machida	36		
р	nysical Science			
	Magnetism: Ferromagnetically coupled stellated cuboctahedral spin nanocage S. Kang and O. Sato	38		
	Magnetism: Imaging and controlling all-in/all-out magnetic domains in pyrochlores S. Tardif	40		
	Magnetism: Competition and collaboration between magnetism and superconductivity: Electronic structures of ferromagnetic superconductors UGe ₂ , URhGe, and UCoGe S. Fujimori	42		
	Magnetism: Linking phonons in SrFe ₂ As ₂ to magnetic fluctuations A. Q. R. Baron, N. Muraí, T. Fukuda and S. Tajíma	44		

	Magnetism : Discovery of suboxidic coordinate in high- T_c ferromagnetic semiconductor Co-doped TiO ₂ W. Hu, K. Hayashi and T. Fukumura	46
	Strongly Correlated System: Strongly correlated ground-state orbital symmetry of tetragonal and cubic Yb compounds probed by linear dichroism in <i>angle-resolved</i> core-level photoemission <i>A. Sekiyama, Y. Kanai and S. Imada</i>	48
	Condensed Matter Physics: Characterization of local strain in $\text{Ge}_{1-x} \text{Sn}_x/\text{Ge}$ fine structures by using microdiffraction <i>O. Nakatsuka, S. Ike and S. Zaima</i>	50
	Condensed Matter Physics: Copper oxide without static Jahn-Teller distortion N. Katayama, H. Sawa and S. Nakatsuji	52
	Condensed Matter Physics: Site-specific valence atomic orbital characterization by detection of angular-momentum-polarized Auger electrons <i>F. Matsui</i>	54
	Amorphous Material: Structure of an extremely fragile liquid S. Kohara and K. Ohara	56
	Liquid Metal: Remarkable dispersion of the acoustic mode in liquid Bi linked to Peierls distortion M. Inuú, Y. Kajíhara, S. Munejírí and A. Q. R. Baron	58
	X-ray Physics: Proposal to generate an isolated monocycle X-ray pulse by counteracting the slippage effect in free-electron lasers <i>T. Tanaka</i>	60
SACLA	Atomic Physics: Nanoplasma formation in rare-gas clusters ignited by intense X-ray free-electron laser pulses from SACLA H. Fukuzawa, T. Tachíbana and K. Ueda	62
Cł	nemical Science	
	Fuel Cell Research : Surface-regulated Nano-SnO ₂ /Pt ₃ Co/C cathode catalysts for polymer electrolyte fuel cells prepared by a new Sn deposition method <i>K. Nagasawa, S. Takao and Y. Iwasawa</i>	64
	Battery Research: Breakthrough in energy density of lithium ion batteries by spectroscopic X-ray diffraction K. Fukuda, T. Kawaguchi and E. Matsubara	66
	Battery Research: Understanding a battery with high-energy X-ray Compton scattering Y. Sakuraí and M. Itou	68
	Nanoscience: Ultrathin inorganic molecular nanowires based on transition metal oxide Z. Zhang, T. Murayama, N. Yasuda and W. Ueda	70
	Nanoscience: Role of liquid indium in the structural purity of wurtzite InAs nanowires that grow on Si(111) A. Biermanns-Föth, E. Dimakis and U. Pietsch	72
	Nanoscience: Bonding and electronic states of boron in silicon nanowires characterized by infrared synchrotron radiation beam N. Fukata, Y. Ikemoto and T. Moríwakí	74
SACLA	Molecular Chemistry: Direct observation of bond formation in solution with femtosecond X-ray scattering J. G. Kim, H. Ihee and S. Adachi	76
	Molecular Chemistry: Fast ortho-para conversion of $\rm H_2$ observed in a coordination nanospace E. Níshíborí, T. Kosone and M. Ohba	78
SACLA	Molecular Chemistry: Visualizing photoinduced intramolecular electron transfer S. E. Canton, K. S. Kjær and M. M. Nielsen	80
	Amorphous Material: Melting of Pb charge glass and simultaneous Pb-Cr charge transfer in PbCrO ₃ as the origin of volume collapse	82

 Nanoscience:
 Formation of stable self-assembled multilayer palladium nanoparticles
 118

 for ligand-free coupling reactions
 N. Hoshiya; S. Shuto and M. Arisawa

SPring. 8

Research Frontiers 2015

SACLA	
Accelerators & Beamlines Frontiers	
SPring-8	
Beam Performance	
Controls & Computing	
Development, implementation and operation of MADOCAII middleware for accelerator and beamline control <i>A. Yamashita and T. Matsushita</i>	
SACLA	
Beam Performance	
New Apparatus, Upgrades & Methodology	
 Highly efficient arrival time diagnostics for SACLA T. Sato and M. Yabashi 	
• Experimental platform for serial femtosecond crystallography at SACLA K. Tono, S. Iwata and M. Yabashi	
• Signal enhancement and Patterson-search phasing for higher-spatial-resolution coherent X-ray diffraction imaging of biological objects Y. Takayama and K. Yonekura	
• Time-resolved hard X-ray photoelectron spectroscopy using SACLA: Investigation of space-charge effects induced with optical pump and X-ray probe pulses <i>LP. Oloff, K. Rossnagel and M. Oura</i>	

Facility Frontiers	136
SPring-8 Facility Status	137
SACLA Facility Status	146

NewSUBARU	148
Low energy soft X-ray emission spectrometer M. Núbe	er at BL-09A in NewSUBARU 149

Note: The principal publication(s) concerning each article is indicated with all author's names in italics in the list of references.