
Research Frontiers 2015 Research Frontiers 2015

122

Development, implementation and
operation of MADOCAII middleware
for accelerator and beamline control

1. Introduction

1.1. What is MADOCA SPring8
 Control Middleware?

The control group of SPring-8 developed
MADOCA (Message and Database Oriented Control
Architecture) middleware for the SPring-8 storage
ring control system in 1997. The SPring-8 control
system consists of workstations in the central
control room and embedded computers placed close
to accelerator components such as the magnet
power supplies, vacuum pumps, beam monitors
and radio frequency generators. These computers
are connected by a network, and the operators send
commands from the workstations to the embedded
computers. Over 500 embedded computers
distributed around SPring-8 control with more than
30,000 control points.

1.2. Communication management

The MADOCA middleware transports control
commands issued by graphical user interface (GUI)
applications, which run on operator workstations,
to the equipment control applications (Equipment
Manager, EM), which run on embedded computers
placed close to the accelerator components. The
operator sends a command such as ‘set b-magnet
power supply to 12.34A’. We build a command such
as set/sr_mag_ps_b/12.34A and send this string
as a message. In this command, the operator does
not care which embedded computer controls the
b-magnet power supply and how the embedded
computer controls a power supply to give 12.34A.
MADOCA takes care of these issues. We refer
to this scheme as device abstraction. When
MADOCA middleware running on the operator
workstation receives this message from a GUI,
it delivers this message to another MADOCA
middleware running on an embedded computer. The

relationships between the embedded computers
and components are registered in the parameter
database. An application running on the embedded
computer receives a message from the MADOCA
middleware, interprets the command and converts
it to the machine language for the components.
This device abstraction makes GUI development
easy because detailed information is not required
to control components. The messages between
the GUI and EM must be delivered in an accurate,
fast, reliable and simple way by the middleware.
The MADOCA middleware was designed to satisfy
these requirements.

1.3. Database

1.3.1. Parameter management
The other aspect of MADOCA is its database-

oriented architecture. MADOCA manages almost
every parameter required for the accelerator and
beamline operations using a single relational
database management system (RDBMS). It
manages accelerator parameters including magnet
positions, components, embedded computer
relations, alarm thresholds and setting parameters
for the components of the accelerator.

1.3.2. Logging

The RDBMS not only manages parameters
but also logs data collected from almost every
component around SPring-8. SPring-8 has over
30,000 control points. If one piece of equipment
malfunctions, one may be notified by the electron
beam stopping, but how do we figure out which
equipment is broken? MADOCA answers this
question by monitoring every piece of equipment
continuously. Monitored data are stored in the
logging database implemented on the same
RDBMS server. The logging database makes
troubleshooting easy. The MADOCA logging
database has stored all data since SPring-8 was
commissioned. Storing the logging data in the
RDBMS provides a consistent and simple means of
data access. One can access logged data from GUI
using C-library or browser using web interfaces.

Controls & Computing

Research Frontiers 2015 Research Frontiers 2015

123

Research Frontiers 2015Research Frontiers 2015 Research Frontiers 2015Research Frontiers 2015
Controls & Computing Controls & Computing

123

2. MADOCAII, the next-generation MADOCA

The first MADOCA system was developed to
control the storage ring. It now covers beamlines,
injector synchrotron, injector linac, New SUBARU
and SACLA. Since its development about 17 years
ago, we have experienced many shortcomings of
the MADOCA system. We have thus developed a
new next-generation control system (MADOCAII)
based on new technologies. We have experienced
several limitations of MADOCA that were serious
obstacles in developing the next-generation control
system. We will discuss the limitations of MADOCA
regarding both messaging and the logging database
in the following section.

2.1. Messaging in MADOCAII

2.1.1. Messaging in MADOCA

The messaging in MADOCA was based on an ONC-
RPC (open network computing remote procedure
call) system. Although ONC-RPC can handle data
structures of any length, we limited exchanges to
fixed-length strings. This works well for exchanging
short or scalar messages such as ‘switch on’ or ‘set
12.3A’; however, it cannot handle large amount of
data, such as images, or complex data structures.
These data were exchanged using a network file
system (NFS). This system is slow and lacks real-
time capability. Moreover, MADOCA messaging was
limited to only Unix-like systems and a C-language
environment. Although Windows OS, which is not a
Unix-like system, is embedded in many commercial
instruments, it cannot handle MADOCA messaging.
We had to set Unix gateways to use Windows OS in
the SPring-8 control system. It was also difficult to
use ONC-RPC with other computer languages such
as LabView or Python, which have recently become
commonly used in the SPring-8 accelerator and
beamline control system. When one issues an ONC-
RPC command to an application, it is necessary to
wait for the callback. This means applications must be
written in a “send command, wait for answer” which
is called synchronous programming. This slows down
the control application because while waiting for the
callback, the application cannot perform other tasks.
In the next-generation control system, asynchronous
programming is used to solve this problem. In
asynchronous programming, the application works in
a “send, send, send, send commands, do something
while waiting and receive callbacks” manner, which
reduces the waiting time compared with that in
synchronous programming. In the MADOCA system,

the roles of the client (GUI) and server (embedded
computer) were fixed and it was difficult to change
the roles, for example, to send commands from an
embedded computer to an operator console or to
communicate between GUIs.

2.1.2. Messaging in MADOCAII

The messaging in MADOCAII overcomes the
problems in the old MADOCA messaging system.
The most important point is that we use the ZeroMQ
asynchronous messaging library instead of ONC-
RPC. ZeroMQ can exchange variable-length
messages asynchronously on multiple platforms and
in multiple computer languages. The ZeroMQ library
can transport variable-length strings. We can use not
only scalar values like voltage, current and vacuum
measurement but also complex data structures
and images by packing them into strings by using
the MessagePack object serialization library.
Because the ZeroMQ and MessagePack libraries
run on various platforms including Windows OS and
support major languages, MADOCAII can run on a
wide range of platforms and languages. Because
ZeroMQ provides flexible connections, it is possible
to communicate not only from operator workstations
to embedded computers but also from workstations
to workstations and between embedded computers.
This enables many opportunities for control in
the future. Although MADOCAII has dramatically
changed internal communication, we designed
MADOCAII without rewriting the applications written
in the MADOCA environment. Other than a very
small number of applications, old applications now
work with MADOCAII without any modifications.

2.2. Data logging in MADOCAII

2.2.1. Data logging in MADOCA

Data logging in MADOCA also had many
problems. The RDBMS has low performance for
data logging to maintain critical consistency, which is
essential in parameter management. We inserted a
group of values into the RDBMS in each transaction
to compensate for its low performance. While one
value by one insertion is ideal for data management,
it requires too many transactions for the RDBMS.
Moreover, for consistency, the RDBMS requires one
unified memory space in the system, which means
that to obtain better performance by upgrading
hardware, the computer hardware has to be an
expensive shared-memory type multicore CPU.

Research Frontiers 2015Research Frontiers 2015 Research Frontiers 2015Research Frontiers 2015
Controls & Computing Controls & Computing

124

2.2.2. Data logging in MADOCAII
2.2.2.1. NoSQL database

In the logging database management of
MADOCAII we use the NoSQL (not only SQL)
database instead of the RDBMS. We use the
Cassandra database for perpetual data storage
and the Redis database for the newest data cache.
Both databases are NoSQL databases. Cassandra
runs on a homogeneous inexpensive multi-node
computer cluster, which means there is no master or
slave. We found that the performance of Cassandra
is linearly proportional to the number of nodes.
Therefore, if it is necessary to improve performance
of the Cassandra cluster, we will simply add
computers.

In the Cassandra database, each data record is
copied into three replicas and distributed to different
computer nodes. Thus, if one or two computers in
the cluster are broken, data are kept safely and
clusters will still run. Redis is an ultrafast in-memory
database with which one can obtain the newest
values one order of magnitude faster than the
RDBMS. Both Redis and Cassandra pack data into
string format using the MessagePack library. Thus,

we build only one data table format to reduce the
workload in database management.

2.2.2.2. Data acquisition
When we introduced the NoSQL database, we

drastically changed our data acquisition processes.
MADOCA data acquisition process running on
a workstation periodically requests data to the
embedded computers, packs received data into
a RDBMS command and sends it to the RDBMS.
The newly developed MADOCAII data acquisition
system reverses this process. MADOCAII performs
processes on the embedded computers, which
send data to a relay server at their own timing.
The relay server then writes the data into NoSQL
servers. We installed two identical relay servers
for fault tolerance and load balancing. If one server
is broken, the other relay server will work, and, if
necessary, performance can be improved by adding
another relay server. Similarly to the messaging in
MADOCAII, the MADOCAII database library has
backward compatibility to the MADOCA database
system so that no modifications were needed to the
source code.

Embedded computer

Embedded computer

Embedded computer

Relay server

Relay server

Writer

Writer

Writer

Writer

Redis

Cassandra

MADOCA II data acquisition system schematics. Data from embedded computers are
packed in ZeroMQ messages and sent to the relay servers (solid line). Two relay servers
are in operation for redundancy. The relay servers pass the messages to the writer
processes. The writer processes write data into the NoSQL database servers. The dashed
lines mean the data path to the Redis servers and the Cassandra API is expressed in the
dotted line. The relay servers also publish messages with pub/sub mechanism (curly lines).

Research Frontiers 2015Research Frontiers 2015 Research Frontiers 2015Research Frontiers 2015
Controls & Computing Controls & Computing

125

3. Performance and Operation

3.1. Performance
We measured the performance of MADOCAII. For

the messaging, the round-trip messaging between
processes running in the same computer takes
0.4ms. It takes 1.8 ms for the round-trip between
operator workstations and embedded computers.
The data insertion performance of Cassandra
exceeds about half a million per second in the case
of six computer nodes. This is about 50 times higher
than that for the previous MADOCA RDBMS system.
The performance will also linearly increase with the
number of nodes.

3.2. Operation
MADOCAII messaging has been in operation

since September 2012 and the database has
been working since January 2015 in the SPring-8
accelerator and beamlines after prolonged testing.
Both have been working with few major problems.

4. Conclusion
We have developed and implemented the new

MADOCAII system. Although it has an almost
identical interface to the old MADOCA system, the
internal processes are radically changed by using
new information technology such as asynchronous
messaging and NoSQL databases. The main aim of
the development has been achieved and we expect
MADOCAII to serve as the future SPring-8 control
system.

Akihiro Yamashita* and Tomohiro Matsushita

Japan Synchrotron Radiation Research Institute (JASRI)

*E-mail: aki@spring8.or.jp

	Research Frontiers 2015 123
	Research Frontiers 2015 124
	Research Frontiers 2015 125
	Research Frontiers 2015 126

