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Mathematical design of molecular self-assembly

Molecular self-assembly is a phenomenon in which 
multiple molecular subunits autonomously assemble 
into an ordered structural form or pattern without 
any external direction. Self-assembled monolayer 
(SAM) films and mesoporous materials are the well-
established examples that harness the mechanism of 
molecular self-assembly. Molecular machines, which 
were the topic of the 2016 Nobel Prize in Chemistry, 
are also closely related to molecular self-assembly. 
Accordingly, many people are increasingly likely 
to recognize the word “self-assembly” as a topic in 
chemistry. The concept of self-assembly has, however, 
never been limited to chemistry. Indeed many aspects 
of biological activity inside a cell can be appreciated as 
the ultimate form of molecular self-assembly. We have 
a lot to learn from such biological systems to realize 
more advanced technology. Unfortunately, it is not yet 
common to discuss the relationship between chemical 
and biological self-assembly. This is presumably 
because the number of subcomponents participating 
in self-assembly substantially differs in chemical 
and biological self-assembly. More specifically, the 
maximum number of subcomponents that can be 
handled in a chemically designed system is typically 
about ten, with the maximum number of components 
reported in the literature only being on the order of 
10. In nature, on the other hand, there are many 
self-assembly systems that assemble hundreds of 
subcomponents even as discrete molecules. For 
instance, the capsid structure of Bluetongue virus 
shown in Fig. 1 consists of 900 protein subunits. 
Such a level of self-assembly has been a daunting 
challenge and beyond the reach of chemists. What 
we have achieved in our recent work is a proposal 
and demonstration of a geometric design strategy 
that enables self-assembly with a large number of 
components, which had previously been unachievable. 
I t  is not common to exploit  the knowledge of 
mathematics in synthetic chemistry, but such a new 

approach was found to be effective. A mathematical 
description based on a geometric theorem clearly 
explained a previously reported self-assembly. 
Moreover, we succeeded in actually synthesizing a 
structure that was predicted by the theory. This is a 
structure self-assembled from 144 components, which 
is the largest self-assembled supramolecular cage 
ever reported. The methodology and the synthesis 
were described in Ref. 1. The following paragraphs 
summarize the results of the research.

The greatest challenge in a designing multi-
component self-assembly is the “dispersion” of the 
number of components participating in the assembly. 
Similarly to micelles, vesicles, and polymers, upon 
assembling subunits, the dispersion of the number 
of subunits, and accordingly the dispersion of the 
resultant structure, is generally unavoidable. Such 
dispersion is a major obstacle to designing and 
implementing a precise function. Nonetheless, this 
issue can somehow be overcome in nature to achieve 
an accurate 900-component assembly, as shown 
in Fig. 1. How can it be? We focused on the fact 
that most spherical virus capsids have icosahedral 
symmetry. In geometry, restrictions such as congruity 
of the shape of faces or vertices significantly limit the 
number of possible polyhedra, for example regular 
and semiregular polyhedra are limited to only 5 and 13 
species, respectively. Our hypothesis was as follows. If 
we can embed the nature of polyhedra within a system 
of a molecular assembly, only discrete products with 
limited numbers, sizes, and shapes of components 
will be realizable, thus enabling a molecular assembly 
without structural dispersion. We tested this hypothesis 
using a self-assembly system, in which bent ditopic 
organic ligands (L) and divalent palladium ions with 
square planar coordination sites (M) assemble into 
discrete MnL2n metal complexes [2]. The bend angle 
of L is the key to obtaining closed spherical structures 
rather than infinite networked structures (Fig. 2(a)). 
If we view the positions of metal ions (M) as vertices 
and those of organic ligands (L) as edges, each of the 
previously reported self-assembled structures can be 
recognized as semiregular polyhedra. In fact, when we 
fix the valency of vertices to four, which originates from 
the square planar coordination nature of palladium 
ions, only one of the regular polyhedra and four of 
the semiregular polyhedra fulfill the condition. Three 
of the five structures had been synthesized and the 
other two structures, the icosidodecahedron and 
rhombicosidodecahedron, were unprecedented. We Fig. 1.  Bluetongue virus. An example 

of a self-assembled molecule in nature.
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then targeted the realization of the icosidodecahedron 
structure. If our hypothesis is correct, the fabrication 
of the icosidodecahedron structure will be challenging 
but theoretically feasible. We lack space to discuss 
the details here; however, by carefully tuning the 
structure of the organic ligand on the basis of the 
polyhedral design, we succeeded in synthesizing     
the icosidodecahedron structure at beamlines BL38B1 
and BL41XU in SPring-8 and at BL1A in Photon Factory 
(Fig. 2(b)) [3].

This approach based on the knowledge of 
polyhedra was further developed by combining it 
with more detailed mathematical discussion. The 
preceding discussion was limited to regular and 
semiregular polyhedra without a convincing theoretical 
justification. Also, the designable structures have an 
upper limit in terms of the number of subcomponents. 
We thus reconstructed the design theory based on 
the deduction from two chemical requirements: 1) all 
the vertices are tetravalent — a palladium ion has 
square-planar coordination sites, 2) all the edges 
are equilateral — the chemical structure of organic 

ligands remains unchanged on assembly, and one 
symmetrical postulation. As a result, by defining the 
F(h, k) index (h, k = natural numbers) and the Q value 
(Q=h2+ k 2) as a representative value, we realized 
that it clearly described the reported products of the 
MnL2n self-assembly without any defect or overlap. 
(Mathematically, such a discussion corresponds to 
the tetravalent Goldberg-Coxeter construction in 
combination mathematics.) This discussion is not 
limited to the analysis of observed phenomena and can 
be exploited as a design tool for creation. As predicted 
from the Q value, we succeeded in synthesizing an 
M48L96 structure consisting of 144 subcomponents, 
which is the largest synthetic supramolecular structure 
ever reported (Fig. 3) [1].

The methodology we developed has opened up a 
new landscape in the field of molecular self-assembly, 
where no logical synthetic strategy previously existed. 
It revealed that a mathematical approach is beneficial 
for predicting or designing unknown self-assembled 
structures. We expect that this research will accelerate 
the development of the field of molecular self-assembly.
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Fig. 2.  Components and assembled structures of polyhedra.

Fig. 3.  The family of MnL2n polyhedra.
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