In situ HERFD-XANES study on CO₂ activation on niobium oxide clusters Metal oxide clusters consisting of several MO₆ metal oxide units (M: metal ions), called polyoxometalates, exhibit unique reactivities and physical properties owing to their electronic and geometric structures, unlike their bulk materials counterparts. We found that group 5 transition metal Nb/Ta oxide clusters, such as $[M_6O_{19}]^{8-}$ (MV = Nb, Ta) and [Nb₁₀O₂₈]⁶⁻, possess large negative charges and have demonstrated effectiveness as base catalysts [1,2]. Notably, the $[Ta_6O_{19}]^{8-}$ (**Ta6**) cluster shows high activity for CO2 fixation reactions with styrene oxide and amine compounds. DFT calculations predict that the terminal oxygen (Ta=O) on the surface of Ta6 acts as a Lewis base, facilitating monodentate CO₂ coordination [2]. Understanding the structural dynamics of CO2 adsorbed on Ta6 is crucial to elucidating its high catalytic activity. The recent development of a high-energy-resolved fluorescence detection (HERFD) method has garnered attention for its ability to measure XANES spectra with high-energy resolution. This method detects fluorescent X-rays with specific wavelengths, achieving an energy resolution beyond the core electron lifetime width, thereby enhancing the clarity of peaks in XANES spectra [3]. This technique has revealed small peaks that conventional methods often miss and has been applied to evaluate the symmetry of Ce_n oxide clusters (n = 2, 6, 24, 38, 40) [4]. However, HERFD-XANES studies remain relatively limited. In this study, we measured *in situ* Ta L_3 -shell HERFD-XAFS of **Ta6** in DMF during CO₂ adsorption at SPring-8 **BL36XU** beamline (Fig. 1) [5]. The HERFD-XANES measurements revealed previously undetected peaks within the white line region, that could not be observed by the conventional transmission method. In addition, we traced the CO_2 adsorption process on **Ta6** and experimentally clarified that the ligand field splitting is changed by the local structural change of Ta due to CO_2 adsorption. The Ta L_3 -edge HERFD-XANES spectrum of Ta₆ prior to CO₂ adsorption in DMF solution is shown in Fig. 2(a). Peaks (A₁ and B₁) along with a shoulder peak (C₁), which were not visible using the conventional transmission method at SPring-8 **BL01B1** with a Si(111) double crystal, were detected using the HERFD method. These peaks correspond to the electronic transition from 2p to 5d orbitals, which are expected to split due to the ligand field in the distorted octahedral **Ta6** units. These distortions approximate C_{4V} symmetry, enabling a detailed discussion of local distortions using Ta L_3 -edge HERFD-XANES. From the *in situ* HERFD-XANES spectra, we observed gradual changes in the electronic state of **Ta6** in DMF under CO_2 gas flow (Fig. 2(b)). The secondary differential spectra of Ta L_3 -edge HERFD XANES showed slight shifts in peaks A_1 and B_1 to A_2 (-0.2 eV) and B_2 (+0.2 eV), respectively, while peak C_2 emerged at 9885.6 eV, replacing the vanished C_1 peak (Fig. 2(c)). Experimental data revealed that five CO_2 molecules were adsorbed onto **Ta6**, with spectral changes attributed to structural modifications around the Ta centers. To further elucidate the structural changes, DFT calculations were employed to CO₂ adsorbed **Ta6** (**Ta6-CO₂**) model. The surface Ta=O bonds within the {TaO₆} unit elongated, while the bridged Ta-O bonds Fig. 1. Experimental setup for in situ HERFD-XANES measurement. Fig. 2. (a) Comparison of XANES spectra of Ta6 measured by HERFD and transmittance mode. (b) In situ HERFD-XANES spectra of Ta6 during CO_2 adsorption. (c) HERFD-XANES spectra of Ta6 and $Ta6-CO_2$ along with their corresponding second derivative spectra. shortened upon CO₂ adsorption (Fig. 3). This structural adjustment indicated a shift of the Ta atom toward the octahedral center, pushing the {TaO₆} unit closer to Oh symmetry. Energy calculations and electronic structure analyses were performed for the {TaO₆} and CO₂ adsorbed one ({TaO₆-CO₂}), as shown in Fig. 3. In the {TaO₆} unit, regions A₁ (d_{xy} , d_{yx} , d_{zx}), B₁ (d_{z2} , d_{x2-y2} , $d_{z2}+\sigma_0$), and C_1 ($d_{x2-y2}+\sigma_0$) unit correlated with peaks A₁, B₁, and C₁ of **Ta6**. Upon CO₂ adsorption, these evolved into regions A₂ (d_{xy} , d_{yx} , d_{zx}), B₂ (d_{z2} , $d_{z2}+\sigma_0$), and C_2 (d_{x2-y2}), corresponding to peaks A_2 , B_2 , and C_2 of **Ta6-CO₂**. The disappearance of C_1 and the appearance of C₂ were linked to the destabilization of the d_{x2-y2} orbitals, including the hybrid orbital of Ta d_{x2-y2} + 2p orbitals and stabilization of d_{z2} orbitals caused by the structural centering effect. This is mainly .868 Å 103.1 1.987 Å 2.022 Å 2.360 Å Compression $\{TaO_6\}$ ${TaO_6-CO_2}$ Ta6-CO₂ Ta6 2 eV (eV) Region C₁ Orbital Energy Region C₂ Region B d-2+00 Region B₂ Region A2 Region A₁ d_{y2} Fig. 3. Schematic illustration showing the contribution of Ta-based d-orbitals in TaO₆ and TaO₆-CO₂. due to the compression of the bridged Ta-O bonds and the elongation of the Ta=O bonds. In summary, we observed a change in the ligand-field splitting of the Ta 5d orbitals in a Ta6 catalyst upon CO2 interaction, using in situ Ta L3edge HERFD-XANES. Theoretical calculations indicated that the three peaks observed before CO₂ adsorption correspond to transitions to molecular orbitals with significant contributions from the Ta 5d orbitals, which are split by the ligand field of the distorted O_h symmetrical {TaO₆} units. The observed peak replacement reflects the destabilization of the d_{x2-y2} orbitals and the stabilization of the d_{z2} orbital, induced by the centering effect from the off-center arrangement of the {TaO₆} units upon CO₂ attachment to the terminal oxygen. We demonstrate that HERFD-XANES is an effective tool for tracking subtle changes in the electronic and geometric structures of materials in their working state. Seiji Yamazoe Department of Chemistry, Tokyo Metropolitan University Email: yamazoe@tmu.ac.jp ## References [1] S. Hayashi *et al.*: Chem. Asian J. **12** (2017) 1635. [2] S. Hayashi *et al.*: J. Phys. Chem. C **122** (2018) 29398. [3] K. Hämäläinen *et al.*: Phys. Rev. Lett. **67** (1991) 2850. [4] P. Estevenon et al.: Chem. Mater. **35** (2023) 1723. [5] T. Matsuyama, S. Kikkawa, N. Kawamura, K. Higashi, N. Nakatani, K. Kato, and S. Yamazoe: J. Phys. Chem. C **128** (2024) 2953.