2002A0011-ND2 -np BL10XU 2002A0064-ND2-np BL10XU ## High-pressure structural analysis of Fe₃O₄ Y. Moritomo¹ (5181), A. Kuriki² (7241), Y. Ohishi ³ (1213), K, Kato³ (4097), E. Nishibori (3112) ¹, M. Takata (3167) ¹, M. Sakata (3119) ¹ O, Shimomura⁴ (1202), S. Toda⁵, N. Mori⁶ ¹Dept. of Applied Physics, Nagoya Univ., Nagoya 464-8603 ²Dept. of Crystalline Materials Science, Nagoya Univ., Nagoya 464-8603 ³Spring-8/JASRI, 1-1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 ⁴Spring-8/JAERI, 1-1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 ⁵ISSP, University of Tokyo, Kashiwa 277-8581 ⁶Dept. of Physics, Saitama University, Saitama 338-8570 Recently, Todo et al. reexamined pressure effects on the insulator-metal transition (so-called Vervey transition) of Fe₃O₄ with a high quality single crystal. Fe₃O₄ belongs to the inverse spinels, and hence the B site cations take either trivalent (Fe³⁺) or divalent (Fe²⁺) state. With decreases of temperature below T_V (= 120 K), Fe₃O₄ shows a sharp insulator-metal transition. They found that the transition disappears above P_c (= 7.5 GPa) and the system remains metallic down to the lowest temperature. This observation will shed a light on the nature of the Vervey transition, which is still controversial. In order to deeply understand the high-pressure effect on the Vervey transition of Fe₃O₄, detailed structural information including the atomic coordinates is indispensable, because hybridization between the Fe3d and O2p orbitals plays an importance role on this transition High-pressure x-ray powder diffraction were performed at SPring-8, BL10XU beamline at room temperature using a specially designed diamond anvil cell (DAC). Precipitation method was adopted in order to get fine and homogeneous powders. Melt-grown crystal ingots were crushed into fine powder and were sealed in a gasket hole of the DAC, 80 micrometer in thickness and 260 micrometer in diameter, which was filled with ethanol/methanol mixture as a pressure-transmitting medium. The Debye-Scherrer powder rings give a homogeneous intensity distribution, which is the necessary condition for a reliable Rietveld analysis. Magnitude of the applied pressure were monitored by the energy of the luminescence line R_1 from a small piece of ruby placed in the gasket hole. The wavelength of the incident x-ray is 0.49547 A and 0.49493 A, and the exposure time was for 10 min. We have analyzed thus obtained x-ray patterns with RIETAN2000 program. (Fig.1) The crystal symmetry remains cubic (Fd3m; Z=8) in the pressure range up to 20 GPa. Fig.1: X-ray powder diffraction patterns (cross) of Fe_3O_4 at 13.9 GPa. Solid curve is the results of the Rietveld refinement with inverse spinel (Fd3m; Z = 8) structure. ## Possibility of a reaction between MgCO₃ and iron under the lower mantle conditions M.Yamazaki¹ (7106), T. Nagai*¹ (1263), M.Issiki² (1528), T.Tanimoto¹ (7937) and T.Yamanaka¹ (3066) ¹Depart. of Space & Science, Graduate School of Science, Osaka University ²Spring-8/JASRI, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5198, Japan MgCO₃ magnesite is considered to be stable in the lower mantle and one of important minerals on transportation of light elements into Earth's outer core. It was suggested that the reaction between MgCO₃ and iron in the lower mantle occurs and the Fe₃C could transport carbon during core formation. (MgCO₃ + 5Fe \rightarrow Fe₃C + MgO + 2FeO) [1] In this work, we tried to evaluate the possibility of this reaction under the lower mantle conditions using a laser-heated diamond anvil cell. The sample was natural magnesite powder with a small amount of iron powder. Al₂O₃ powder was used as a thermal insulator between the sample and the diamond. A pre-indented Rhenium gasket was used and sample chamber was about 150 μ m in diameter. A conventional ruby fluorescence method was used for determining sample pressure. Nd-YAG(150W) laser was used and the size of a hot spot in the sample chamber was about 50 μ m in diameter. Experiment was carried out at the condition of 42GPa and 1500K. X-ray beam was monochromatized to the wavelength of 0.4133 Å and was collimated to 20μ m in diameter. Figure 1 shows the observed diffraction peaks. We found some new diffraction peaks at 42GPa and 1500K. It is still controversial that these new peaks come from some reaction products. Further studies of assignment of new diffraction peaks are now in progress. Fig.1 Observed diffraction patterns. Open circles represent new peaks. [1] H.P.Scott, Q.Williams & E.Knittle, Geophys. Res. Lett., 28(9), 1875-1879, 2001