Characterization of polyimide films for LCD by X-ray reflectmetry and small angle scattering

Kimiaki Tsutsui*(13586), Takahiro Sakai(13560),Kouhei Goto(13602), Hirofumi Shida(14586),Masahide Ishizuva(14569) and Ichiro Hirosawa¹ (2088)

Electric Materials Research Laboratories, Display Materials Research Group, Nissan Chemical Industries, LTD.

Rubbed polyimide(PI) films are widely used in liquid crystal (LC) displays to align LC uniformly. The surface structure of the rubbed PI are very important for control of LC alignmentability. In 2004A, we found the correlation between the degree of crystallinity on the rubbed PI surface and LC alignmentability by grazing -incidence X-ray scattering (GIXS). Not only surface structure but also internal structure of the film is important for LCD properties, because it can control electrical properties of LCD. But there are few methods to characterize the internal structure of very thin PI films (20nm~100nm). So we measured X-ray reflectmetry and small angle scattering to clarify the internal structure of PI films at BL19B2 of Spring-8.

A typical PI film for monitors, cellular phone, PDA, etc. was used. A thin film (thickness;100nm) was formed on Si substrate by spin coating was performed with using a multi-axis diffractmetor installed in the 2nd hatch of BL19B2. Incident angle of 10.0KeV X-ray to the sample surface was set more than the critical angle of total reflection on the polyimide surface.

Experimental curve (lexp) and calculation curve by monolayer model(Ical) are shown in Figure 1. We can see that Ical is not fit for Iexp. This implies the PI may not be monolayer.

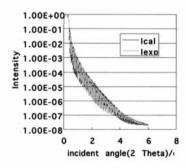


Figure 1 Intensity vs. 2 theta curve for PI film. Iexp is experimental curve and Ical is calculation curve(by monolayer model).

We found that Ical by bilayer model is fit for Iexp and could clarify the internal structure of the PI film by this method. From these results, we will investigate the correlation between the internal structure of PIs and electrical properties of LCD.

Partial structure analysis of Y2O3:Eu phosphor doped with Zn

Hiroko Kominami (15191), Yoichiro Nakanishi* (15199)

Research Institute of Electronics, Shizuoka University

Purpose and Background

Rare earth doped yttrium oxide $(Y_2O_3:RE)$ phosphors have been investigated for emitting material of electron beam excitation from initial development of color-cathode ray tubes (CRTs). Recently, field emission displays (FEDs) which are used a same excitation mechanism with CRTs have been studied actively for emissive flat panel displays of next generation. However, the excitation voltage of FED is much lower than CRT. Then, there are many problems such as charging-up on the phosphor surface, stability and resistivity, therefore it is necessary for development of new phosphors and enhancement of commercial phosphors.

Y₂O₃:RE phosphors are expected for FED phosphor because of their stability against electron beam irradiation, however, at low energy excitation, luminescence is insufficient as a result of charging-up on the phosphor surface. It was found that chathodoluminescent properties of Y₂O₃:RE phosphors were improved up to 30% by Zn addition of 10~20% in our experiment. Then, to make clear the contribution of Zn to Y₂O₃:RE phosphors for enhancement of luminescent properties, the analysis using XAFS measurements were tried.

Experimental

Zn doped Y₂O₃:Eu phosphor powders were prepared by citric acid gel method as liquid phase reaction using nitric acid yttrium and zinc and europium chloride for source material. All materials were well-solved in water then the distributions of Zn and Eu are uniformly synthesized this method. Y₂O₃:Eu powder phosphor also prepared using same method for comparison of Zn doped powder.

Results

From results of the observed Eu_L₃ and Zn_K X-ray absorption near edge structure (XANES) spectra of Zn

doped and undoped Y_2O_3 :Eu, and Eu_2O_3 clrealy showed that Eu atoms exists trivalent ions in Y_2O_3 host material, however Zn in Y_2O_3 exists divalent ions.

Radial structural functions (RSFs) derived from observed the extended X-ray absorption fine structure (EXAFS) oscillations of Zn doped Y_2O_3 :Eu was measured. These RSFs were derived by Fourier-transformation of their EXAFS interference functions. Eu³⁺ ion in Zn doped Y_2O_3 host showed similar partial structure with Y_3 ion in Y_2O_3 , different with Eu³⁺ in Eu₂O₃. It means that Eu³⁺ is replaced Y site in Y_2O_3 .

On the other hand, Zn ions did not exist Y-site in Y_2O_3 . Fig.1 shows RSFs of Zn doped Y_2O_3 :Eu, ZnO, Zn metal and Y_2O_3 . The nearest neighbor of Zn signal in Y_2O_3 resembles ZnO. It is thought that ZnO phases partially formed in Y_2O_3 phases. Moreover, the intensity of Zn in Y_2O_3 :Eu showed that the actual concentration of Zn in Y_2O_3 is lower than a few mol%. Probably, Zn removed form Y_2O_3 easily during calcinations and only a few amounts of Zn are taken in

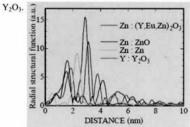


Fig.1 RSFs of Zn doped Y₂O₃:Eu, ZnO, Zn metal and Y₂O₃.

Summary

The partial structure of Zn in Y_2O_3 :Eu is analyzed using XAFS measurement. It considered that ZnO phases exists in Y_2O_3 phases. Only few Zn replaced to Y-site in Y_2O_3 . Moreover, it is clarified that Zn concentration is smaller than 1 mol%, around $0.1 \sim 0.5$ mol%, much lower than the amount of addition during synthesis.

Japan Synchrotron Radiation Research Institute