1997B0084-ND-np BL02B1

## Single Crystal Analyses of ε-O<sub>2</sub> High-Pressure Phase of Solid Oxygen

# Yuichi AKAHAMA(0001226)\*\*, Haruki KAWAMURA(000127)\* Osamu SHIMOMURAb, Yukio NODAc

\*Faculty of Science, Himeji Institute of Technology, bSPring-8 and Faculty of Science, Chiba University

#### 1. Introduction

Pressure-induced metallization and molecular dissociation of oxygen, O<sub>2</sub>, with molecular magnetism have attracted special interest because of the novel electronic and magnetic preperties of the high-pressure phases[1]. Determination of the structural properties of the high-pressure phases is indispensable for understanding the electro-magnetic properties.

In this study, the high-pressure single-crystal analysis of  $\beta$ -O<sub>2</sub> and  $\epsilon$ -O<sub>2</sub> of low-Z element has been carried out including setup of the diffractometer on the BL02B1.

### 2. Experimental

The rhombohedral  $\beta$ -O<sub>2</sub> (R $\overline{3}$ m) and monoclinic  $\epsilon$ -O<sub>2</sub> crystals were grown under high pressure and temperature conditions at 5.5 GPa and 300 K and at 20 GPa and 600 K, respectively, in a Merrill-Bassett type DAC[2] which had a conical window of 70° (20=35°) to insident and scattering sides. The DAC was placed on a Huber diffractometor and the monochromated beam with an energy of 30 KeV( $\lambda$ =0.4133 Å) was exposed to the sample through a 0.5 mm diameter pin-hole.

#### 3. Results and Discussion

For the  $\beta$ -O<sub>2</sub> sample, the UB parameter and the lattice constants of the hexagonal cell, a=2.806(2) and c=10.28(2) Å, were determined from a least-squares fitting of 13 reflections. The values are listed in table I together with previous results[3]. The c-axis was unfortunately vertical to the top-surface of the diamond anvil. The typical reflection profile is shown in Fig.1. The almost reflections splitted into two or more peaks. Intensity data could be measured for 39 symmetry-independent reflections which were reduced to 12 nonequivalent

reflections. Structure refinement is in progress.

Two polycrystal  $\varepsilon$ -O<sub>2</sub> samples with several crystals were tested with the oscillation photographs taken by using a vacuum camera and it was found that the single crystal analysis is feasible

Table I. Structure parameters for  $\beta$ -O<sub>2</sub> phase together with the previous results[3].

|                       |                                         | This work | Schiferl[3] |
|-----------------------|-----------------------------------------|-----------|-------------|
| Pressure              | P(GPa)                                  | 5.7       | 5.5         |
| Temperature           | <i>T</i> (K)                            | 297       | 299         |
| Lattice constant      | α(Å)                                    | 2.806(2)  | 2.846       |
|                       | c(Å)                                    | 10.285(2) | 10.224      |
| Volume                | V(ų)                                    | 70.2(2)   | 71.76       |
| Atomic parameter      | z                                       |           | 0.0577(2)   |
| Thermal parameter     | $\beta_{11} = \beta_{22} = 2\beta_{12}$ |           | 0.1647(7)   |
|                       | $\beta_{i3} = \beta_{3i}$               |           | 0           |
|                       | $\beta_{x_3}$                           |           | 0.0055(3)   |
| Internuclear distance | S(Å)                                    |           | 1.202(2)    |
| R factor              | $R_{\mathbf{w}}$                        |           | 0.050       |



Fig. 1 Typical reflection profile of  $\beta$ -O, phase.

- [1]Y. Akahama et al., Phys. Rev. Lett. 74, 4690 (1995).
- [2]Y. Akahama et al., in *Proc. AIRAPT Int. Conf.* Kyoto, (1997)p.781.
- [3] D. Schifferl et al., Acta Cryst. B37, 1329 (1981).