

Semiconductor to Metal Transition and Local Structure in Arsenic Tellurides

T.Miyanaga^{*}/3319, H.Hoshino¹/3093, H.Ikemoto²/3120, I.Yamamoto¹/3092, S.Ikeda/4196
and H.Endo³/3094

Faculty of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan

¹Faculty of Education, Hirosaki University, Hirosaki, Aomori 036-8560, Japan

²Faculty of Science, Toyama University, Toyama 930-8555, Japan

³Faculty of Engineering, Fukui Institute of Technology, Fukui 910-8505, Japan

1. Introduction

It is important to study the local structures of liquid (l-) As-Te mixtures, because they undergo the semiconductor to metal (S-M) transition at high temperature.¹⁾ SPring-8 has an advantage to measure the X-ray absorption spectra for high energy region including the Te *K*-edge (31 keV). In the present paper we report the result of Te-*K*-edge EXAFS for liquid Te and As₂₀Te₈₀ measured at BL01B1 at SPring-8 and the comparison with the data measured at Photon Factory.

2. Experimental and Data analysis

The mixtures were prepared by weighing 99.999% pure As and Te and by vacuum sealing them in silica glass ampoules. More detailed procedure of sample preparation is described elsewhere.¹⁾

K-edge X-ray absorption spectra were obtained at BL 01B1. A Si(311) double crystal monochromator was used. X-ray absorption spectra were recorded in transmission mode using the ionization chamber detector. The sample was located in a quartz cell with a suitable sample thickness. The EXAFS interference function, $\chi(k)$, was extracted from the absorption spectra by the program of XANADU code described elsewhere.²⁾

3. Result and Discussion

Figure 1 shows the comparison between EXAFS $\chi(k)$ of Te *K*-edge for l-As₂₀Te₈₀

(500°C) measured at BL01B1 in SPring-8 and that at BL10B in Photon Factory. The quality of the spectrum measured at Spring-8 is well improved, especially at high k region. We have good hopes that SPring-8 provides high quality data of EXAFS for high energy region such as Te *K*-edge.

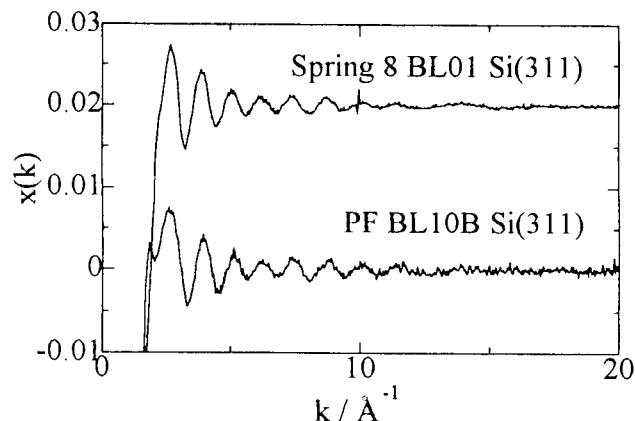


Fig.1 The comparison between EXAFS $\chi(k)$ spectra of Te *K*-edge for l-As₂₀Te₈₀ (500°C) measured at BL01B1 in SPring-8 and that at BL10B in Photon Factory.

4. Acknowledgements

This work is partly indebted to Nippon Sheet Glass Foundation for Materials Science and Engineering for financial support.

References

- 1) H. Hoshino, T. Miyanaga, H. Ikemoto, S. Hosokawa and H. Endo: J. Non-Cryst. Solids **205-207**, (1996) 43.
- 2) H. Sakane, T. Miyanaga, I. Watanabe, N. Matsubayashi, S. Ikeda and Y. Yokoyama: Jpn. J. Appl. Phys. **32** (1993) 4641.