

Small Crystal Diffraction Experiments on Bicapped C₆₀ / γ -cyclodextrins Complex

Yasushi Kai* (0003127)

Department of Materials Chemistry, Graduate School of Engineering, Osaka University

Based on the superatom concept for C₆₀, proposed by Z. Yoshida, the water soluble bicapped C₆₀ / γ -cyclodextrins complex is designed as an artificial nitrogenase. The bicapped C₆₀ operates well under mild condition in the presence of Na₂S₂O₄ and ATP or inorganic triphosphate, and converts molecular nitrogen into ammonia with extremely high efficiency. This is a revolutionary discovery that alters the current scientific knowledge of nitrogen fixation. The results provide important implications for biological nitrogen fixation, and significant advancement in catalytic nitrogen fixation process. The bicapped C₆₀ / γ -cyclodextrins complex forms purple plate crystal together with 15H₂O, and is soluble in water. Although its X-ray crystal structure has not yet been determined because of the difficulty in growing single crystals, its symmetric structure was suggested from no splitting of ¹H and ¹³C NMR signals for the two γ -cyclodextrins units.

The water soluble bicapped C₆₀ / γ -cyclodextrins complex was prepared by the following procedure: To a solution of γ -cyclodextrins in water was added, a solution of C₆₀ / C₇₀ mixture in toluene. The mixture of two liquid phases was refluxed at 100°C, 48h under vigorous magnetic stirring. After cooling to room temperature, the aqueous layer containing precipitated C₆₀ / γ -cyclodextrins complex was centrifuged at 15 Krpm for 5min. The crude purple solid was washed with cold water and

dried well in vacuo. The obtained solid was dissolved in warm water and then the aqueous solution was filtered to remove the insoluble materials (free C₆₀ and C₇₀). The filtrate was freeze-dried to give stable C₆₀ / γ -cyclodextrins complex. It was recrystallized from water to give a small purple plate.

In order to elucidate essentials of this compound, the crystal structure determination was carried out. A single crystal with the size of 10x30x30 μ m³ was irradiated by 30.75 Kev X-rays. Diffraction pattern was collected using the vacuum camera at BL02B1. The crystal was oscillated six times by 6°, and the scan speed was 2° /min. The overlapped rotation angle were 1° for the scaling of intensities recorded on separate IP plates. It required 15 hours for 29 photographs. The ring current was 18.0 mA during the measurements. Unfortunately, the specimen was deteriorated in the course of exposures and the whole diffraction data could not be collected. An indexing of the image data were carried out, but the integrated intensities were not accurately determined by the existing computer programs because the peaks are too close to be distinguished.

We can demonstrate as preliminary experiment, however, that the intensity collection using the vacuum camera system can be utilized for such a small crystal from which diffraction pattern could not be recorded using a conventional laboratory system.