## High-pressure and high-temperature in situ X-ray diffraction experiments of (Mg,Fe)SiO<sub>3</sub> enstatite and ilmenite

K. Fujino\* $^1(3257)$ , H. Miura $^1(3259)$ , T. Shinmei $^1(3256)$ , N. Tomioka $^1(3255)$ , Y. Hou $^1(4009)$ , R. Odawara $^1(3995)$ , S. Sato $^1(4008)$ , N. Miyajima $^2(3254)$ , T. Irifune $^3(1224)$ , K. Kuroda $^3(3154)$ , and N. Nishiyama $^3(3210)$ 

## Introduction

MgSiO<sub>3</sub> ilmenite is one of the high pressure polymorphs of enstatite. However, its equation of state (EOS) at high-pressure and high-temperature has not been obtained. These experiments were carried out to obtain the EOS of MgSiO<sub>3</sub> ilmenite from in situ X-ray diffraction data at high-pressure and high-temperature.

## In situ X-ray diffraction experiments

In situ X-ray diffraction experiments at high-pressure and high-temperature were performed by the SPEED-1500 system at SPring-8. Synthetic MgSiO<sub>3</sub> clinoenstatite as a starting material and NaCl as a pressure marker were enclosed in a BN sleeve. The incident synchrotron X-ray beam was directed to the sample through the anvil gap via 50 µm horizontal slit and 300 µm vertical slit.

## Equation of state of MgSiO<sub>3</sub> ilmenite

The high temperature EOS for MgSiO<sub>3</sub>

ilmenite was derived by fitting the obtained pressure-volume-temperature data to the high temperature form of the third order Birch-Murnaghan EOS which is given by the following expression:

$$P = \frac{3}{2}K_{T,0}[(V_{T,0}/V)^{7/3} - (V_{T,0}/V)^{5/3}]\{1 - \frac{3}{4}(4 - K_{T,0})[(V_{T,0}/V)^{2/3} - 1]\}$$
(1)

where  $K_{T,0}$ ,  $K_{T,0}$ ,  $V_{T,0}$  are the isothermal bulk modulus, its pressure derivative, and the unit cell volume at temperature T and ambient pressure, respectively.  $K_{T,0}$ ,  $K_{T,0}$  and  $V_{T,0}$  were assumed as follows:

$$K_{T,O} = K_{300,0} + (\partial K_{T,O} / \partial T)_p (T-300)$$
 (2)

$$K_{T,0}' = K_{300,0}'$$
 (3)

$$V_{T,0} = V_{300,0} \exp[\langle \alpha_{T,0} dT \rangle]$$
 (4)

where  $\alpha_{T,0}$  is the thermal expansion coefficient at T and ambient pressure. In this study, we used the following linear expression for  $\alpha_{T,0}$ :

$$\alpha_{T,0} = a_0 + a_1 T \tag{5}$$

Determined parameters are  $K_{300,0}'=1.87(5)$ ,  $a_0=2.12\times10^{-5}K^{-1}$ ,  $a_1=1.07(53)\times10^{-8}K^{-2}$  and  $(\partial K_{T,0}/\partial T)_p=-0.019(4)GPa/K$  under the constraints of  $K_{300,0}=212GPa$  and  $\alpha_{300,0}=2.44\times10^{-5}\,K^{-1}$ .

<sup>&</sup>lt;sup>1</sup> Division of Earth and Planetary Sciences, Hokkaido University, Sapporo 060-0810 Tel: 81-11-706-2728, Fax: 81-11-756-0120, E-mail: fujino@cosmos.sci.hokudai.ac.jp

<sup>&</sup>lt;sup>2</sup> Institute for Solid State Physics, University of Tokyo, Tokyo 106

<sup>&</sup>lt;sup>3</sup> Department of Earth Sciences, Ehime University, Matsuyama 790