

High-Energy X-ray Diffraction Experiment on GeO_2 Glass

K. Suzuya※ 0000326, **Y. Yoneda** 0001167, **N. Matsumoto** 0001147

Y. Kashihara 0000051, **S. Kohara** 0001457, **K. Funakoshi** 0001115

H. Yamaoka 0000084

Japan Atomic Energy Research Institute (JAERI), Sayo, Hyogo 679-5143, Japan

Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan

The Institute of Physical and Chemical Research Laboratory (RIKEN), Sayo, Hyogo 679-5143, Japan

High-energy synchrotron X-ray diffraction is considered a new probe in non-crystalline materials (liquids and glasses) research because it combines the high penetration power of thermal neutrons with the enlarged range of Q ($Q = 4\pi \sin\theta / \lambda$) leading to a better direct space resolution [1]. Direct comparison between the wide- Q range X-ray and neutron diffraction data using same sample and the same environment is possible.

The diffraction experiment was carried out on the two-axis diffractometer tentatively built at high-energy BL08W wiggler beam line at SPring-8. The set-ups of slits and detectors with the diffractometer covered the range of $Q = 1.5 - 40.0 \text{ \AA}^{-1}$ at an incident photon energy of 274 keV.

The resulting X-ray weighted structure factor $S(Q)$ for GeO_2 is shown in Fig. 1, compared to the earlier diffraction studies using 11 keV (conventional) X-rays and pulsed (white) neutron radiation. The figure is illustrating that the high- Q data of the present study has seriously poor statistics though the Q -range is equal to that of pulsed neutron study. Such

a experiment will be completely allowed by the use of high-flux 50 - 150 keV X-rays and focusing.

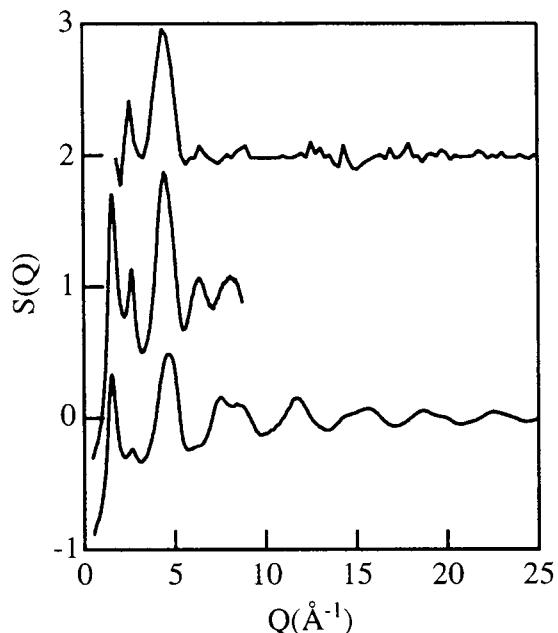


Fig. 1. Comparison of the structure factor of GeO_2 glass obtained with 274 keV photons (upper, this work), 11 keV photons (middle), and thermal neutrons (lower).

Reference

[1] H.F. Poulsen, J. Neufeld, H.-B. Neumann, J.R. Schneider and M.D. Zeidler, J. Non-Cryst. Solids 188 (1995) 63