

Measurement of Internal Conversion Electron from Monoatomic Layers on Surfaces

* Tatsuo Okano^a (0003465), Katsuyuki Fukutani^a (0003164), Taizo Kawauchi^a (0003096), Shunji Kishimoto(0003040)^b, Zhang Xiao-Wei^b(0001270), Tamotsu Magome^a(0003165), Umnaj Teeraponpipat ^a(0003855)

^{a)} Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Tokyo 106-8558, Japan

^{b)} Institute of Material Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

We have measured conversion electrons from ^{57}Fe foil and single crystals of Fe_2O_3 and FeBO_3 at the BL-09XU beamline. We obtained energy distribution and time spectrum of the conversion electrons excited with 14.413keV nuclear resonant SR. The apparatus for the measurement consisted of a sample holder and an energy analyzer contained in a UHV chamber. The energy analysis of the emitted electrons was made by using a planer electrostatic quadrupole analyzer which deflected the electrons by 90°. The acceptance angle and the energy resolution was 0.04p and 4%, respectively. Electrons were detected by using an avalanche photodiode (Hamamatsu:SPL0142) which showed excellent time response (<1ns) and noise characteristics (<0.01cps). The SR was monochromatized to 2meV band-width with a Si premonochromator and a high-resolution monochromator. The count rate of the avalanche photodiode for the prompt emission of X-ray was 1.4×10^6 . By the combined use of energy analysis and time discrimination in singnal processing, the prompt signals originated from the non-resonant component of electrons and photons were successfully suppressed. The enegy spectrum of the

electrons excited with 14.413keV X-ray showed peaks of K- and L- shell conversion electrons KLL and Auger electrons as shown in Fig.1. The count rate for the peak of the K-shell conversion electrons was 0.51 cps. The time spectrum of the conversion electrons showed simple exponential decay with decay time constant of $131 \pm 17\text{ns}$, which coincide with the decay time of isolated Fe nuclei, 141 ns. No significant speed-up of the decay process was observed.

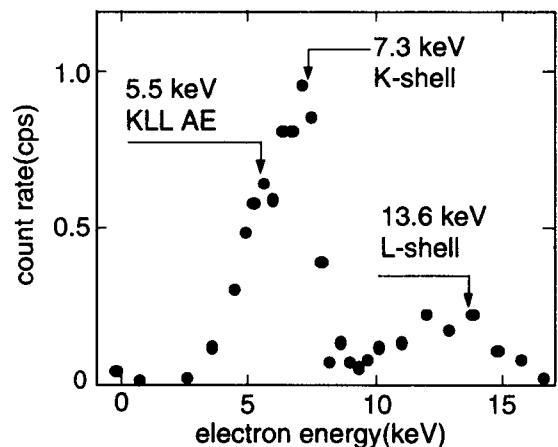


Fig.1. Energy distribution of electrons from ^{57}Fe enriched foil excited with 14.413 keV photons.