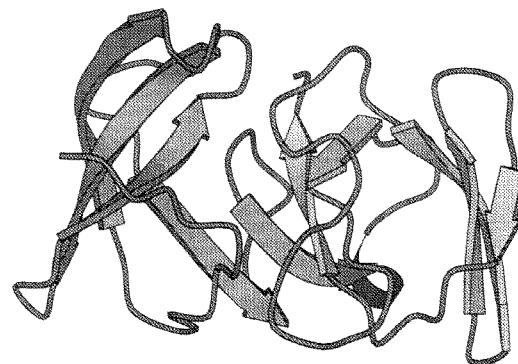


Structure determination of ribosomal protein L2 by multiplewavelength anomalous diffraction method

Isao Tanaka* (0003339), Masae Taniguchi (0003857), Harumi Hosaka (0003341), Takashi Nakashima[†] (0004496), Atsushi Nakagawa (0003338), Makoto Kimura[†]
 Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, [†]Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka 812-8512, Japan

INTRODUCTION

In all living cells, protein synthesis is carried out in cellular organelles called ribosomes. These large ribonucleoprotein complexes are generally organized in two subunits of unequal size. In prokaryotic *Escherichia coli* ribosomes, the large (50S) subunit consists of 34 proteins and 5S and 23S rRNAs, while the small (30S) subunit is a complex of 21 proteins and 16S rRNA. The fundamental activity of the ribosome is to decode the message of the mRNA and to form a peptide bond between peptidyl-tRNA and aminoacyl-tRNA (peptidyl transferase). The protein L2 is known to be most important constituent of the peptidyl transferase center. Furthermore, the protein L2 is a primary 23S rRNA-binding protein and is known to play a crucial role in assembly of the domain IV in 23S rRNA. We have crystallized the recombinant protein corresponding to the central region of the L2 (60 - 201, *Bst*L2-RBD), which has been shown to be a 23S rRNA-binding domain. We tried to collect diffraction data on the beamline 41XU at the SPring-8, however, no good diffraction data was obtained due to the lack of good L2 crystals during our beamtime. Nonetheless, we have succeeded in solving its three-dimensional structure, which we report here.


RESULTS

Diffraction data was collected at BL18B at the Photon Factory. MAD diffraction data of recombinant selenomethionyl *Bst* L2-RBD were collected in cold nitrogen gas stream at 100 K. Three data sets were collected on and around the selenium K absorption edge. Data were integrated using DENZO. Scaling and processing were performed using the CCP4 program suite.

The Bijvoet and dispersive anomalous difference Patterson maps were solved by the SHELXS-97. Heavy-atom parameter refinement and phase calculations were carried

out using the program SHARP, and the initial electron-density map was subsequently improved by real-space solvent flipping with SOLOMON. The model was refined against the "Remote" data with the program X-PLOR. The refined model has an *R*-factor of 19.9% for 91% of the data between 20 Å and 2.3 Å, including 63-194 and 60-194 residues for crystallographically independent molecules, respectively, and 57 water molecules, for a total of 2075 atoms. The free *R*-factor for the remaining 9% of the data within this resolution range is 28.6%. The rms deviation from standard values of bond lengths and bond angles are 0.007 Å and 1.276°, respectively.

The figure shows a stereo view of the overall structure of *Bst* L2-RDB. The molecule has an all beta structure consisting of two domains of approximately the same size. The amino terminal domain has a five-stranded β-sheet and is folded into an open β-barrel structure with its open side facing the carboxyl terminal domain. The carboxyl terminal domain is also folded into a five-stranded β-barrel. The C-terminal β-barrel is characterized by a pair of short antiparallel β-sheets facing each other. These two domains are connected by a short 3_{10} helix and are arranged so to create a putative RNA-binding site between them. The barrel axes of the two domains are approximately perpendicular to each other.

