CONTENTS

	title		first author	page
В	L01B1			
	XAFS study on implanted Cu ions in silica glass	Н.	Kageyama	1
	XAFS Study of the Local Structures in Perovskite-type Solid Oxide Crystal Electrolytes	T.	Yao	2
	XAFS Study on the Local Structure Change around Silver in Zeolite.I.Performance Test of BL01B1 toward Ag K-edge Spectrum	Н.	Sakane	3
	XAFS Studies on Metal Ion Photocatalysts Incorporated within Zeolite Cavities	Н.	Yamashita	4
	XANES study of mechanically alloyed Y ₂ Ni	I.	Nakai	5
	XAFS Study on Electronic Structure in Eu@C ₆₀	Υ.	Kubozono	6
	XAFS Studies on Pd, Ag Particles Supported on CeO ₂	Υ.	Matsumura	7
	K-edge XAFS of rare earth elements in oxides, carbides and nitrides	Т.	Nakagawa	8
	General evaluation of XAFS beamline I - XAFS in the high energy region -	Y.	Nishihata	9
	XAFS study on liquid Te and I under high temperature and high pressure	Y.	Katayama	10
	Wavelength Dpendence of Diamond Detector for X-ray Beam Position Monitor	Н.	Aoyagi	11
	XAFS analysis of heavy elements in accumulators	Н.	Hashimoto	12
	Solvation Structures of Iodide Anions in Various Solvents	I.	Watanabe	13
	Total-Reflection XAFS of Aqueous Solution Surface	I.	Watanabe	14
	Studies on the Structure of Pd Supported on Zeolite by XAFS	K.	Okumura	15
	Semiconductor to Metal Transition and Local Structure in Arsenic Tellurides	T.	Miyanaga	16
	Structual Analysis of Tin-doped Indium Oxide (ITO) Thin Film by XAFS Spectroscopy	N.	Umesaki	17
	Conversion-helium ion yield XAFS at La K -absorption edge	M.	Takahashi	18
	Local Structure and Magnetic Property for Hard Magnetic Material $Sm_{\scriptscriptstyle 2}Fe_{\scriptscriptstyle 17}N_{\scriptscriptstyle X}$	Н.	Kasatani	19
	Characterization of BL01B1	S.	Emura	20
	Characterization of specific elements accumulated in marine biomineral	C.	Numako	21
	XAFS Analysis for the Local Structures of Noble Metal - Ceria Catalysts	Н.	Kanai	22
	Analysis of local structure and perpendicular magnetic anisotropy of GdCo and GdFe thin filmes	Y.	Fujiwara	23

Local Structure of Erbium Doped Glasses Studied with XAFS Measurements	K. Haga	24
The Local Structural Analysis of Sb Catalyst in PET polymers	H. Kobe	25
Evaluation of Energy Resolution of BL01B1 Using XANES Spectra of Various Metal Ions	of T. Tanaka	26
EXAFS Measurements of Nd³+-doped Glasses on the Nd K-edae	H. Yamaguchi	27
BL02B1		
Structure Analysis of Sodium Paradodecatungstate on BL02B1 of SPring-8	T. Ozeki	28
Precise Crystal Structure Analysis of $K_3H(SO_4)_2$ by High Energy X-ra Diffraction Method	H. Kasatani	29
Micro-Crystal Structure Analysis and Its Application to the Strudy of Photo-Induced Structural Change of the Metal Complex	K. Toriumi	30
Small Crystal Diffraction Experiments on Bicapped C $_{\rm 60}/\gamma$ -cyclodextr Complex	rins Y. Kai	31
Crystal structural Analysis of the Fullerene Compounds by the Maximum Entropy Method	E. Nishibori	32
Defect stucture in pure Ni irradiated with iodene ions and electrons	T. Matsui	33
Powder Deffraction of Chang Disproportionate Perovskite and Layer Pervskite Oxides of CaFeO $_3$ and Sr $_3$ Fe $_2$ O $_{7-x}$	S. Morimoto	34
Structure analysis of a $SrTiO_3$ perovskite single crystal at 3.5GPa us hard x-rays of $30 keV$	sing N. Hirai	35
Development of Electronic Excited State Crystallography by Imaging Plate Detector	Y. Ozawa	36
High-Resolution Powder Diffraction Experiments at BL02B1	H. Toraya	37
Precursor Phenomena on the Ferst-Order Phase Transition in Ferroelastic Compouds II	Y. Kuroiwa	38
Phase Transition of Hexagonal BaTiO ₃	Y. Noda	39
Lattice Modulaion and Charge Ordering Associated with the Spin Ordering in CeP	Y. Noda	40
Chrage Ordering in Vanadium Compoud	Y. Noda	41
Eledtron distribution of hydrogen atom of squaric acid in high pressu phase	ıre Y. Noda	42
Lattice Modulation and Charge Ordering in La _{2-x} Sr _x CuO ₄ (x=1/8)	Y. Noda	43
Crystal Structure of Polysyntehtic Twinned Phase in A_2BX_4 -type Ferroelectrics	H. Shigematsu	44
X-ray study of phason strains in Al-Pd-Mn and Al-Ni-Co decagonal quasicrystals	Y. Matsuo	45

Crystal structure analy diffraction and anoma	ysis of zeolite using high resolution lous dispersion effect	on powder .	Y.	Toriumi	46
Precise Measurement γ ' Phase In Ni Base	ts of Lattice Parameter Mismatch Alloy	between γ and	Т.	Sakon	47
The Structure of thin t	antalum oxides on silicon substra	ates :	S.	Yasuami	48
X-ray Structure Analy	vsis of Host-Guest Organic Micro	Crystals	Y.	Takenaka	49
Structural Fluctuation	in a Disordered Ternary Alloy	;	S.	Hashimoto	50
Nature of Atomic Disc PSN	ordering in Relaxor Ferroelectrics	of PMN and	H.	H.Chen	51
Single crystal X-ray di	iffraction of the phase transforma	tion in solid C ₇₀	Т.	S.Radhakrishnan	52
Crystal Structure Anal	lysis of a Cobaloxime Complex	1	Н.	Uekusa	53
	surement of Electron Density Distr plexes with SR and Vacuum Can		K.	Tanaka	54
Structure Determination Compounds	on of Small Crystals of Organic fu	unctional I	M.	Yasui	55
BL04B1					
The Structural Chang Arsemic Chalcogenide	near the Semiconductor-Metal T	ransition in	H.	Endo	56
Olivine to Modified Sp	ninel Phase Boundary in the Syste	em (Mg,Fe)₂SiO₄ I	M.	Matsui	57
X-ray Diffraction Meas	surements for Expanded Fluid Me	ercury I	K.	Tamura	58
X-ray Diffraction Meas	surements for Expanded Fluid Se	elenium I	M.	Inui	59
In-situ Measurement of and Temperature Cor	of Rheology of Silicate Garnet at additions	High Pressure	J.	Ando	60
The determination of t	the <i>P-T</i> phase diagram of PbZrC)3	S.	Endo	61
	on of graphite-diamond transition and high temperatures	using catalysts	W.	Utsumi	62
Effect of heating on the under high pressure	ne first sharp diffraction peak for a	amorphous SiO ₂	N.	Kitamura	63
In-situ X-ray diffraction amorphous alloys und	n study of crystallization process der high pressure	of Nd-Fe-B	S.	Hirosawa	64
Structure of Liquid Te	llurium at High atemperatures	1	K.	Tsuji	65
Structure of Liquid Ch	alcogen under Pressure	1	K.	Tsuji	66
Hydrostatic compress	ion of cristobalite(SiO ₂) using SP	EED 1500	Μ.	Yamakata	67
•	n study on kinetics of decomposit MgO and perovskite MgSiO ₃	ion of spinel .	Т.	Kubo	68

Establishing equation of state of MgO and MgSiO ₃ perovskite based on simultaneous measurements of acoustic velocity and density	A.	Yoneda	69
High pressure and high temperature in situ X-ray observation of hydrous wadsleyite, $Mg_{1.75}SiO_4H_{0.5}$ under the condition of the mantle transition zone	Т.	Inoue	70
Preliminary results on in situ X-ray observations of the spinel-postspinel transformation in a pyrolite composition	Т.	Irifune	71
Precise determination of the phase boundaries among ilmenite, garnet and perovskite structures in MgSiO ₃ by in situ x-ray observations	K.	Kuroda	72
The precise determination of the reaction from spinel to perovskite and periclase in Mg ₂ SiO ₄ -Fe ₂ SiO ₄	т.	Katsura	73
High-pressure and high-temperature in situ X-ray diffraction experiments of (Mg,Fe)SiO₃ enstatite and ilmenite	K.	Fujino	74
Structural Analysis of Supercritical Water	Υ.	Ohmasa	75
High Pressure and Temperature Phase of ZrO ₂	Ο.	Ohtaka	76
X-Ray Diffraction Experiments on the Fe-FeS Eutectic Melt at 10 GPa	S.	Urakawa	77
In-situ viscosity measurement of NaAlSi ₃ O ₈ (albite) melt at high pressure	M.	Kanzaki	78
Subsolidus Transition from Wadsleyite (beta Phase) to Spinel (gamma Phase) in the System Mg₂SiO₄ as a Function of Pressure and Temperature	M.	J. Walter	79
Calibration of cubic anvil cell using sintered diamond	S.	Ono	81
In Situ Observation of the Ilmenite-Perovskite Phase Transformation in Mg ₂ SiO ₃ Using Synchrotron Radiation	S.	Ono	82
Phase equilibrium study of grossular garmet (Ca ₃ Al ₂ Si ₃ O ₁₂) under high pressure and temperature	т.	Yagi	83
Determination of phase transition pressure in GaP	T.	Yagi	84
08W			
An Attempt to Change the Half-Lives of β -Decay Nuclides	Н.	Baba	85
Performance of a 100-150 keV Monochromator for High Energy Synchrotron Radiation	Н.	Yamaoka	86
		Yamaoka Seigo	86 87
Synchrotron Radiation Evaluation of 90° -Scattering Magnetic Compton-Profile method with	M.		
Synchrotron Radiation Evaluation of 90°-Scattering Magnetic Compton-Profile method with High Energy X-Rays	M. Y.	Seigo	87
Synchrotron Radiation Evaluation of 90° -Scattering Magnetic Compton-Profile method with High Energy X-Rays Observation of Anisotropic Magnetic Compton Profiles of hcp-Co β-Ce magnetic Compton Profile Measurement by Helicity Switching	M. Y. N.	Seigo Kakutani	87 88
	High pressure and high temperature in situ X-ray observation of hydrous wadsleyite, Mg _{1.75} SiO ₄ H _{0.5} under the condition of the mantle transition zone Preliminary results on in situ X-ray observations of the spinel-postspinel transformation in a pyrolite composition Precise determination of the phase boundaries among ilmenite, garnet and perovskite structures in MgSiO ₃ by in situ x-ray observations The precise determination of the reaction from spinel to perovskite and periclase in Mg ₂ SiO ₄ -Fe ₂ SiO ₄ High-pressure and high-temperature in situ X-ray diffraction experiments of (Mg,Fe)SiO ₃ enstatite and ilmenite Structural Analysis of Supercritical Water High Pressure and Temperature Phase of ZrO ₂ X-Ray Diffraction Experiments on the Fe-FeS Eutectic Melt at 10 GPa In-situ viscosity measurement of NaAlSi ₃ O ₈ (albite) melt at high pressure Subsolidus Transition from Wadsleyite (beta Phase) to Spinel (gamma Phase) in the System Mg ₂ SiO ₄ as a Function of Pressure and Temperature Calibration of cubic anvil cell using sintered diamond In Situ Observation of the Ilmenite-Perovskite Phase Transformation in Mg ₂ SiO ₃ Using Synchrotron Radiation Phase equilibrium study of grossular garmet (Ca ₃ Al ₂ Si ₃ O ₁₂) under high pressure and temperature Determination of phase transition pressure in GaP	High pressure and high temperature in situ X-ray observation of hydrous wadsleyite, Mg _{1.75} SiO ₄ H _{0.5} under the condition of the mantle transition zone Preliminary results on in situ X-ray observations of the spinel-postspinel transformation in a pyrolite composition T. Precise determination of the phase boundaries among ilmenite, garnet and perovskite structures in MgSiO ₃ by in situ x-ray observations The precise determination of the reaction from spinel to perovskite and periclase in Mg ₂ SiO ₄ -Fe ₂ SiO ₄ High-pressure and high-temperature in situ X-ray diffraction experiments of (Mg,Fe)SiO ₃ enstatite and ilmenite Structural Analysis of Supercritical Water Y. High Pressure and Temperature Phase of ZrO ₂ X-Ray Diffraction Experiments on the Fe-FeS Eutectic Melt at 10 GPa In-situ viscosity measurement of NaAlSi ₃ O ₈ (albite) melt at high pressure Subsolidus Transition from Wadsleyite (beta Phase) to Spinel (gamma Phase) in the System Mg ₂ SiO ₄ as a Function of Pressure and Temperature Calibration of cubic anvil cell using sintered diamond In Situ Observation of the Ilmenite-Perovskite Phase Transformation in Mg ₂ SiO ₃ Using Synchrotron Radiation Phase equilibrium study of grossular garmet (Ca ₃ Al ₂ Si ₃ O ₁₂) under high pressure and temperature Determination of phase transition pressure in GaP T.	High pressure and high temperature in situ X-ray observation of hydrous wadsleyite, Mg _{1.79} SiO ₄ H _{0.5} under the condition of the mantle transition zone Preliminary results on in situ X-ray observations of the spinel-postspinel transformation in a pyrolite composition T. Infune Precise determination of the phase boundaries among ilmenite, garnet and perovskite structures in MgSiO ₃ by in situ x-ray observations The precise determination of the reaction from spinel to perovskite and periclase in Mg,SiO ₄ -Fe,SiO ₄ High-pressure and high-temperature in situ X-ray diffraction experiments of (Mg,Fe)SiO ₃ enstatite and ilmenite Structural Analysis of Supercritical Water High Pressure and Temperature Phase of ZrO ₂ X-Ray Diffraction Experiments on the Fe-FeS Eutectic Melt at 10 GPa In-situ viscosity measurement of NaAlSi ₃ O ₃ (albite) melt at high messure and mg_SiO ₄ as a Function of Pressure and Phase) in the System Mg ₂ SiO ₄ as a Function of Pressure and Temperature Calibration of cubic anvil cell using sintered diamond In Situ Observation of the Ilmenite-Perovskite Phase Transformation in Mg ₂ SiO ₃ Using Synchrotron Radiation Phase equilibrium study of grossular garmet (Ca ₃ Al ₂ Si ₂ O ₁₂) under high pressure and temperature Determination of phase transition pressure in GaP T. Yagi

BL09XU

The nuclear resonant scattering beam properties on the various rotation times of the hyper fine field in the magnetic material	T. Mitsui	92
Development of Nuclear Resonant Inelastic Scattering Technique	M. Seto	93
X-ray inelastic scattering of Hemoproteins	T. Harami	94
Surface Structure Analysis of Solid Liquid Interfaces	M. Nakamura	95
Nuclear forward scattering on andradite at hydrostatic pressures to 43 GPa	L. Zhang	96
Nuclear Resonant Scattering Study of the Dynamics in Polymer Gels	K. Hara	97
Structure Analysis of Semiconductor Electrode Surfaces by X-ray Standing Wave Method	M. Takahasi	98
Nuclear Resonant Scattering of Ferromagnetic Amorphous Ribbon	S. Nasu	99
Inprovement of sensitivity for detecting strains in silicon using highly collimated x-rays	Y. Kudo	100
Measurement of Internal Conversion Electrons from Monatomic Layers on Surfaces	T. Okano	101
Nuclear resonant scattering study of quasicrystal i-AlCuFe	K. Shibata	102
Preliminary Experiments of Surface and Interface in BL09XU	S. Nakatani	103
Modulation of CTR Scattering under Bragg Condition	W. Yashiro	104
A Feasibility Examination of Multiple-Energy X-ray Holography in BL09XU	S. Nakatani	105
Preliminary Study for the X-ray Standing Wave Analysis of the Electrode/Zirconia (solid state electrolyte) Interface	A. Saito	106
High-pressure Mosbauer study of FeS with nuclear forword scattering of synchrotron radiation	H. Kobayashi	107
Nuclear Resonant Diffraction in Nearly Perfect Synthetic Hematite Crvstals Containing Various Contents of ⁵⁷ Fe	M. Ando	108
Study of vibrational dynamics in transition metal-metalloid, metallic glasses	A. Gupta	109
Nuclear resonant scattering by the nuclei with high transition energy	Y. Yoda	110
BL10XU		
Compression behavior of rhodochrosite, MnCO ₃	T. Nagai	111
Structure of Chalcogens under High Pressere	K. Nagata	112
Structure of Ga ₂ Se ₃ and GaSe under Hige Pressure	M. Takumi	113
Structural Studies of Two-Dimensional Ferromagnets A_2CuF_4 (A=K, Rb, Cs) at High Pressure and Low Temperature	M. Ishizuka	114

Angular-Dispersive Powder X-ray Diffraction from the High Pressure Phase of Fe_2O_3	S. Morimoto	115
Structural Studies of Nbl₄ under High Pressure	H. Kawamura	116
Structural Phase Trasition of Molecular Solid under High Pressure	H. Kawamura	117
Amorphization from the High-Pressure Phase in III-V Compounds	K. Tsuji	118
Density of Liquid Se under High Temperature and High Pressure	Y. Katayama	119
XAFS analysis of optical activation process of Er in $Si:Er_2O_3$ thin film	M. Ishii	120
Crystal Structure Analyses of Solid Oxygen High-Pressure Phases and Research for Molecular Dissociation	Y. Akahama	121
Electron Density Distribution Analysis of Pressure-Induced s-d Transition of Cesium by MEM	Y. Ohishi	122
Characterization of the Al-rich phase(s) in the garnet-perovskite phase transformation	K. Fujino	123
A Sensitive XAFS study using tunable X-ray undulator	Y. Kuwahara	124
Structure Analysis of Tetrahedral-Molecular Crystal and Amorphous at High Pressure	N. Hamaya	125
High Pressure Phase transitions in Adamantane	V. Viswanathan	126
Investigation of pressure induced crystal-crystal phase transformations in $\alpha\text{-AIPO}_{\scriptscriptstyle 4}$ prior to amorphization	S. M. Sharma	127
Development of Ultra-high Density Solid State Detector Array for Rapid and Sensitive XAFS	H. Oyanagi	128
Facility for temperature dependent XAFS at BL10XU	N. L. Saini	129
Development of Polarized XAFS Measurements for Small Single Crystals	C. Lee	130
Development of control software for fluorescence XAFS measurement	H. Nagamori	131
BL14B1		
In situ SXS Study of Electrodeposition Process on Electrode	K. Uosaki	132
Second Order Phase Transition of FeS under High Pressure and Temperature	K. Kusaba	133
Development of high pressure and high temperature <i>in situ</i> X-ray diffraction system using Drickamer-type apparatus	T. Yagi	134
BL25SU		
Behavior of the well-ordered 6H-SiC(000-1) surface in the atmosphere	H. Sasaki	135
Study on the Magnetism of Gd/Fe and Y/Fe amorphous multilayers via MCD	Y. Fujiwara	136
MCD Spectrum at Mn $L_{2,3}$ -Edges in Ferromagnetic Mn Compounds	H. Maruyama	137

A. Banerjee	138
H. Daimon	139
S. Imada	140
H. Daimon	141
S. Suga	142
S. Suga	143
A. Banerjee	144
R. Jung	145
H. Sasaki	146
T. Miyahara	147
K. Soda	148
T. Kanashima	149
A. Wakahara	150
I. H. Suzuki	151
H. Aoyagi	152
H. Yoshida	153
T. Kanashima	154
A. Ektessabi	155
I. Nakai	156
M. Mizumaki	157
M. Takagaki	158
M. Ito	159
	H. Daimon S. Imada H. Daimon S. Suga S. Suga A. Banerjee R. Jung H. Sasaki T. Miyahara K. Soda T. Kanashima A. Wakahara I. H. Suzuki H. Aoyagi H. Yoshida T. Kanashima A. Wakahara I. H. Suzuki H. Aoyagi H. Yoshida T. Kanashima

	Development of A Monochromatic Beam Method of X-ray Magnetic Diffraction with A Phase Plate and A Linear Polarizer	M.	Ito	160
	Atomic image around Zn in GaAs:Zn using multiple energy X-ray holography	K.	Hayashi	161
	Analysis of thin films by X-ray scattering at grazing incidence	K.	Sakurai	162
	Feasibility tests of Johansson-type X-ray fluorescence spectrometer	K.	Sakurai	163
	Detection of trace metals by X-ray fluorescence using total reflection	K.	Sakurai	164
	Two dimensional elemental mapping and non-destractive characterization of the elements accumulated in biominerals and related environmental specimens	I.	Nakai	165
	Study of Electronic States in 3d Transition-Metal Oxides by X-Ray Resonance Magnetic Scattering	K.	Namikawa	166
	XMCD Spectrum at Pt $L_{2,3}$ -Edges Recprded by Helicity Modulation Technique	Н.	Maruyama	167
	Multielectron Excitation in 3d -Transition Metal Compounds	Н.	Maruyama	168
	Preliminary Test of X-Ray Emission Spectroscopy in Gd-Iron Garnet Single Crystal	Н.	Maruyama	169
	Element Analysis by X-ray Flourescence Imaging with Wolter Mirror	N.	Watanabe	170
	ATS Reflection of Magnetite (Fe ₃ O ₄)	J.	Kokubun	171
	X-ray fluorescence spectroscopy and trace element analysis using an x-ray microprobe	S.	Hayakawa	172
	Wavelength despersive x-ray fluorescence spectroscopy using monochromatized x-ray excitation	S.	Hayakawa	173
В	L41XU			
	Crystal Structure Analysis of Human High-affinity Receptor for IgE.	Н.	Nishida	174
	Structure determination of ribosomal protein L2 by multiplewavlength anomalous diffraction method	I.	Tanaka	175
	The structure determination of yeast 1-aminocyclopropane-1-carboxylic acid deaminase by multiple wavelength anomalous dipersion method	A.	Nakagawa	176
	X-ray Crystallographic Study of Ribulose 1, 5-Bisphosphate Carboxylase/Oxygenase from a Red Alga, Galdieria Partita, with High Specificity Factor	Y.	Kai	177
	X-ray Date Collection from Heavy-atom derivative crystals of Streptomyces antibioticus Phosholipase D	A.	Suzuki	178
	Structure and function of photosystem I complexes	K.	Satoh	179
	X-Ray Crystallographic Study of Thermostable Aspartate Aminotransferase	K.	Hirotsu	180
	X-ray Crystallography of Bacteriorhodopsin	Т.	Kouyama	181

Cryogenic X-ray Crystallography of Light-Harvesting Complex of Photo System II (LHC-II)	T. Kouyama	182
Crystal Structure Analysis of Valyl-tRNA Synthetase in a complex with $\ensuremath{\text{tRNA}^{\text{Val}}}$	O. Nureki	183
Crystal Structure Analysis of ValyI-tRNA Synthetase in a complex with $tRNA^Val(II)$	O. Nureki	184
X-ray Crystallographic Studies on DNA Repair Enzymes	K. Fukuyama	185
The crystal structure of fully oxidized cytochrome c oxidase from bovine heart at 2.0 Å resolution	R. Nakashima	186
Crystallographic Study of G-CSF Receptor Complexed with G-CSF	M. Aritomi	187
Crystal Structure Analyses of Bovine Rhodopsin	T. Okada	188
Structure of G-protein couple Receptor (Rhodopsin)	M. Tsuda	189
Structure of Diol Dehydrase Containing Bitamin B ₁₂ Analogue	N. Shibata	190
SH2/SH3/SH2 composite domains of GAP120 complexed to a diphosphorylated peptide	E. F.Pai	191
Crystal structure analysis of Hmc	N. Shibata	192
Collection of X-ray diffraction data from the crystals of <i>Bucillus</i> circulans chitinase D using various X-ray optics	T. Matsumoto	193
X-ray Crystal Structure Analysis of <i>E.coli</i> Crysteine desulfrase 2	Y. Hata	194
Evaluation of Performance of the Bio-Crystallography Beamline by Means of Refinement of High-Resolution Crystal Structure	M. Fujihashi	195
Studies on Structure-Function Relationship of DNA Replication Control Proteins by Means of X-ray Crystallography	K. Miki	196
X-ray Structural Analyses for a Series of Mutant Human Lysozymes	K. Takano	197
Crystal Structure Analysis of Maltooligosyl Trehalose Synthase	M. Kobayashi	198
Structural basis for the control of antigen-antibody reaction	Y. Yamagata	199
Time-Resolved Crystal Structure Analysis of Photoreactive Nitlile Hydratase with Large-Angle Oscillation Technique	Y. Kawano	200
The flexibility of protein molecule in terms of the crystallography of DHFR mutants	K. Katayanagi	201
MIROAS Crystal Structure Analysis of Aleuria Aurantia Lectin with the Automatic Diffractometer	M. Kawamoto	202
SIRAS Phase Determination of Pressurized-Xe Protein Crystals with High-Energy X-rays	Y. Kawano	203
X-ray crystallography of calcium-dependent inhibitory factor	H. Sasaki	204
Crystal Structure Analysis of Water-Soluble Chlorophyll Protein from Raphanus Sativus var. hortensis	A. Uchida	205

	X-ray Structure Analysis of Hydrogenase at High Resolution	Н.	Ogata	206
	Crystallographic Study of an electron-transfer complex between Ferredoxin and Ferredoxin-NADP+ reductase	G.	Kurisu	207
	A new hilium chamber and a long collimator with a four-way guard slit for collecting X-ray diffraction date from very low to high resolution	K.	Hasegawa	208
	X-ray crystallographic studies of flagellar HAP2 and F41 fragment	K.	Imada	209
	Crystal structure analysis of 20S Proteasome from bovine liver	M.	Unno	210
	X-ray fiber diffraction from well oriented sols of native thin filament and F-actin	Т.	Oda	211
	Structural Studies on Thermal Stabilization of Enzymes	R.	Hirose	212
В	L44B2			
	Time-Resolved X-ray Diffraction with Rotating Nanocrystal	Υ.	Sasaki	213
	Extracting Phase Information from Laue Diffraction Data	Q.	Нао	214
	Evaluation of Laue diffraction date from the crystal of FMN binding protein	N.	Shibata	215
	Analysis of the anisotropic displacement parameters of the catalytic domain of chitinase A1 from <i>Bacillus circulans</i>	Т.	Matsumoto	216
	High-Resolution Crystal Structure of Intermediate Liganded State of ($^{\text{Fe(II)}}$) ₂ ($^{\text{Mg(II)}}$) ₂ Hybrid Hemoglobin	S.	Park	217
	X-ray crystallographic analysis of the evolution of vertebrate hemoglobins	K.	Chong	218
	High Resolution Data Collection and Preliminary Laue Diffraction Study of Adenylate Kinase from <i>Sulfolobus solfataricus</i>	Н.	Yamaguchi	219
	Time Resolved Crystal Structure Analysis of Photoreactive Nitlile Hydratase with Laue Diffraction Technique	Y.	Kawano	220
	X-ray crystallographic study of bacteriorhdopsin1s reaction intermediates by the time-resolved Laue method	Т.	Kouyama	221
В	L45XU			
	Metal Cluster Labeling of Contractile Proteins in Muscle: Its Application to Small-Angle X-ray Scattering/Diffraction Studies	Н.	Iwamoto	222
	Test of the Small-angle Beamline for X-ray Diffraction Experiments on Skeltal Muscle	N.	Yagi	223
	X-ray Solution Scattering of Biological Supramolecules on an Undulator Radiation Source	Υ.	Inoko	224
	Effect of molecular architechture on the Flory interaction parameter	K.	Kimishima	225
	Characterization about the Structure of Emulsion Particles by Using Small Angle X-ray Scattering(SAXS) Method	K.	Saiga	226

Structural analysis during the photocycle of bacteriorhodopsin revealed by time resolved X-ray diffraction	T. Oka	227
An X-ray diffraction study on rat cardiac muscles	H. Suga	228
BL47XU		
The Behaviour of Ionization Chambers under the Irradiation of High Flux X-ray Beams	M. Suzuki	229
Speckle Without The Pinhole	A. Baron	230
Measurement of the emittance using crystal optics	Y. Kohmura	231
Evaluation of X-ray Bubble Lens & X-ray Hollow Plastic Ball Lens	Y. Kohmura	232
Refraction in imaging with parallel X-ray beam for medical use	K. Yamasaki	233
Feasibility Study on Microimaging with Phase Zone Plates at 6.5keV	K. Takemoto	234
Characterization of Zone Plate for Focusing X-ray	H. Miyaji	235
Contact Beamline		
Contact Beamline BL24XU		
	Y. Tsusaka	236
BL24XU Development of High Resolution X-ray Imaging by the Refraction	Y. Tsusaka Y. Katsuya	236 237
BL24XU Development of High Resolution X-ray Imaging by the Refraction Contrast Method Evaluation of Biocrystallography Experimental Hutch of Hyogo		
BL24XU Development of High Resolution X-ray Imaging by the Refraction Contrast Method Evaluation of Biocrystallography Experimental Hutch of Hyogo Beamline (BL24XU) Observations of Fatigue Cracks in Structural Materials by Refraction	Y. Katsuya	237
BL24XU Development of High Resolution X-ray Imaging by the Refraction Contrast Method Evaluation of Biocrystallography Experimental Hutch of Hyogo Beamline (BL24XU) Observations of Fatigue Cracks in Structural Materials by Refraction Contrast X-ray Imaging	Y. Katsuya T. Nakayama	237
BL24XU Development of High Resolution X-ray Imaging by the Refraction Contrast Method Evaluation of Biocrystallography Experimental Hutch of Hyogo Beamline (BL24XU) Observations of Fatigue Cracks in Structural Materials by Refraction Contrast X-ray Imaging Phase Contrast Imaging of Carbon Material X-ray diffraction topography of polished silicon surfaces under total	Y. Katsuya T. Nakayama K. Izumi	237 238 239