BL13XU 表面界面構造解析

1.はじめに

SPring-8年報2001年度版の、表面・界面X線構造解析の記 事においては、対象が希薄であるため、安定、かつ、大き なX線光子密度と可能な限り低いバックグランド強度環境 とが要請されると書いた。前者の安定、かつ、大きな光子 密度に関係した更新事項として、ビームラインモノクロメ ータのステージを改造したことを既に報告した^[1]。また、 ユーザー実験に応じて重量1トンの超高真空チャンバを回 折計に載せかえた直後15µm沈降する一方、その後は安定 したことを記録した。今回まずX線バックグランド散乱強 度の低減化に関して報告する。

ほかの最新内容は、ダイナミック・フィードバックコン トロールシステムの設置である。このシステムを、動力学 的X線回折測定と高エナジX線利用実験のための準備と位 置付けた。活動状況などを最後に報告する。

2.X線バックグランド散乱強度の低減化

試料前に配置するコリメータと試料後方に設置するビー ムストッパの組み合わせによって、X線散乱強度をおさえ る。(これは普通に用いられる方法のひとつである。) この コリメータは、ビーム整形スリットと試料の間に置かれる。 そのビーム整形スリットの刃から生じる散乱X線を防止す る効果が特に大きいと期待している。図1は、実験ハッチ 1の多軸回折計にそのペアをセッティングした場合である。 そのコリメータは"半割"した2個のPbピースからなり、 0.3×0.3 mm、長さ100 mmの隙間をもつ。これは周辺技術

図1 Pb製コリメータとダイレクトビーム・ストッパ

グループの指導のもと製作された。ダイレクトビームスト ッパは、Pbに穴の開いた構造になっているので、これをポ ケットと称した。そのストッパはBL02B2で使われているも のを参考にした。このペアを使う前後で、散乱強度は低減 化したが、とくに低2 において、その効果が著しかった (ここでは、その結果を表示していない)。

3.X線強度ダイナミック フィードバック コントロール システム

標記システムを準備する動機は以下の通りである:薄膜 構造解析や表面吸着構造解析に動力学的X線回折を適用す る際、および、高エナジビームを利用する際の両方の場合 に、本システムを用いてビームコンディショナを制御する こと。 安定性、 所望の角度発散を有するX線ビームの 作成、 高エナジX線の抽出について、そのシステムの性 能を評価した。その3項目のテストでは、ビームコンディ ショナとして、Si(004)チャンネル・カット結晶を用いた (図3)。、 では用いた入射X線のエナジは15.9 keVで あった。 では47.4 keVを切り出した。

本システムをonにしたとき、IC2とIC1の比(IC2/IC1)は ほぼ一定であった(図4)。その最大強度と最小強度の平均 値からのはずれの大きさは平均値の±0.4%であった。その 図には、本システムをoffにしたときの結果ものせた。IC1の わずかな変調が、増幅されたようにIC2/IC1比に観察された。 (参考:そのチャンネルカット結晶を回転して得られた、ビ ームラインからのビームのFWHM角度発散は6.3 arc secで

図2 X線強度ダイナミック フィードバック コント ロール システムのブロック・ダイアグラム例

図3 IC1とIC2とに挟まれたSi(004)チャンネルカット結 晶。微小回転台に取り付いたピエゾ トランスレー 夕の伸縮によって、結晶の回転を制御した。

図4 イオン・チャンバで測定されたX線強度の時間変化。

図5 Si(004)チャンネルカットからのX線ビームの角度 プロファイル。X線エナジは15.9 keV。

あった。)

そのチャンネルカット結晶の下流にSi(004)を置き、平 行配置を作った。その第2結晶を回転し、評価されるチャ ンネルカット結晶からのFWHM発散角(1.8 arc sec)を測 定した(図5)。この測定値は、ほぼ計算値と一致している。 に関して、ビームライン モノクロメータの角度をSi

図6 Si(0012)チャンネルカットからのX線ビームの角度 プロファイル。X線エナジは47.4 keV。

(333) 47.4 keV用にセットした。同時に生じるSi(111)からの15.8 keVのX線は、厚さ10 mmのアルミニウム プロックをそのチャンネルカット結晶の上流側に据え置いて、落とした。そのチャンネルカット結晶、および、その下流の結晶面を双方とも(0012)に変えて同様に測定した(図6)。プロファイルのFWHMは計算値の3倍となった。この条件では、ダイナミック フィードバック コントロール システムは予想の性能を発揮していない。モニタ スタビライザのせいではないと推測している^[3]。そのチャンネルカット結晶がつねにゆれていた。対策のひとつとして、 ピエゾ トランスレータを短いものに変え、精度をより向上させることを計画している。

3節をまとめると、a)20 keV以下の動力学的回折測定に は、本システムは安定に機能する。b)高エナジ利用測定 では、修正の余地がある。そのシステム設計、準備にあた り、工藤統吾氏、西野吉則氏に助言をいただいた。(参考記 事^[2])。システムの核であるモニタ スタビライザは工藤氏 からお借りした。今井康彦氏と評価実験した。理化学研究 所石川研究グループのDeckel NC millingmachineをお借り して、結晶を加工した。山崎 裕史氏、清水 康宏氏からその 装置の使用法の教育を受けた。

4.活動状況

2002A、2002Bのビームタイムの使われ方を整理する。そ れぞれのテーマは複数の側面をもつので、多次元統計処理 が必要である。ここでは試料、対象、手法、実験ハッチを 函数として分類してみた。表1と表2に示す。半導体結晶、 金属結晶の研究が多い。ビームラインができてすぐに共同 利用になったこととも関連すると考えているが、立ち上げ 課題もあった。ハッチ利用率(表3)は、2002年通年では 超高真空チャンバ用回折計(青土俵)の方が、大気中の多 軸回折計よりも利用が多かった、ことを示している。これ は表面構造の研究がより時間を使ったと言い換えることも できる。成果については、ハッチ1の利用実験に関して、 論文1件が発行された。ハッチ3に関連して特許1件を出 願した。 表1 2002Aビームタイムの配分。四捨五入の関係で、100%と合わない。実験ハッチのことをハッチと表中では記した。 GID:微小角配置測定、CTR:crystal truncation rodに沿う測定、XSW:定在波測定、Ref:鏡面反射率測定、D:4軸モードの測定

試 料	対 象	手 法	ハッチ	シフト数	%	小計%
Si 上	表 面	GID,CTR	3	2 7	12	
Si 上	金 属 ナノワイア	XSW	3	36	14.7	37.3
Si 上	薄膜界面	Ref	1	2 1	9.3	
金属	表 面	GID	3	33	14.7	
金属	溶液中界面	D	1	2 1	9.3	26.7
金属	膜	D	1	6	2.7	
有 機	薄 膜	GID	1	6	2.7	2.7
立ち上げ	回折計	-	3	4 5	20	28
立ち上げ	モノクロ	1	-	18	8	
No beam					5.3	5.3

表2 2002Bビームタイムの配分。四捨五入の関係で、100%と合わない。

試 料	対 象	手 法	ハッチ	シフト数	%	小計%
Si 上	表 面	GID,CTR	3	15	7.9	
Si 上	ワイア	XSW	3	2 1	11	30.5
Si 上	薄膜界面	Ref	1	6	3.2	
Si	表 面	CTR	1	15	7.9	
金属	表 面	GID	3	5 1	26.8	
金属	溶液中界面	D	1	9	4.7	34.7
有 機	薄 膜	D	1	6	3.2	
有機	薄 膜	GID	1	18	9.5	9.5
酸化物	超 薄 膜	D	1	15	7.9	7.9
立ち上げ	酸化物ナノワイア	手法開発	1	15	7.9	17.9
立ち上げ	装置	-	1	19	10	

表3 実験ハッチの利用率

	ハッチ1	ハッチ 3
2002A	32%	63%
2002B	54%	46%

参考文献

- [1] 坂田修身: SPring-8年報 2001年度(2002) 60.
- [2] 工藤統吾他:日本放射光学会誌 16(2003) 39.
- [3] 工藤統吾氏とのPrivate communication.

利用研究促進部門I

構造物性 グループ・表面構造チーム

坂田 修身