4-3 原研ビームライン BL11XU 原研 材料科学

1.はじめに

BL11XUは、材料科学研究用ビームラインとして建設さ れた^[1-8]。核共鳴散乱法による物性研究、高温高圧下の物質 の構造解析、X線非弾性散乱法による強相関電子系の研究、 表面X線回折計を用いたMBE結晶成長中のその場観察とい う4つの研究分野を主体目的としていた。しかし、慢性的な ユーザー実験時間不足を解消するために、BL22XU(量子 物性研究用ビームライン)の完成に伴い、高圧プレスと高 温高圧実験装置をBL22XUへ移設した。よって、BL11XUで の実験は、2002年3月で終了した。

2002年度夏期停止期間と冬期停止期間、およびそれに引 き続いて液体窒素循環冷却装置の導入と分光器の改造、そ れに必要な作業を行なった。そのため、例年よりユーザー 実験時間が少なくなった。2002年度(但し、2002年2月~ 2003年1月)にBL11XUで行われた実験のうち、原研ユー ザーによる実験は表1の通りである。表中の割合(%)は、 共同利用実験等を除いた原研内の配分割合である。表中の 「その他」欄の占める割合が多いのは、液体窒素循環冷却装 置の導入とそれに伴うハッチの改造、分光器の改造のため にビームラインを停止したことと、分光器の立ち上げ調整 作業に割り当てたためである。一方、一般共同利用実験と ナノテクノロジープロジェクト実験では、2002A、2002B合 わせて合計8課題、74シフト(全実験時間の14.2%)を受け 入れ、実験が行なわれた。

表1 原研ユーザー実験配分実績

	核共鳴散乱	高温高圧	非弹性散乱	表面界面	XAFS	その他
シフト数	63	39	93	90	27	136
割合(%)	14.1	8.7	20.8	20.1	6.0	30.3

この報告書では、液体窒素循環冷却装置の導入と分光器 の改造と、今年度行なわれた実験について報告する。

(塩飽 秀啓)

2.分光結晶の変更と液体窒素循環冷却装置の導入

原研ではビームライン高度化の一環として、より高輝度 かつ安定したX線を得るために、分光器に液体窒素循環冷 却装置を導入した。それに伴い、分光素子をシリコン単結 晶へ変更した。また、液体窒素循環冷却装置に必要なハッ チ及びハッチユーティリティーの改造と分光器の改造を行 った。シリコン結晶の物理特性として、液体窒素温度近傍 ではシリコンの熱伝導率が高くなり、効率的に熱を除去す ることができる。また線熱膨張率が低いため、温度勾配に よる結晶の歪を抑えることができるため、シリコン結晶の 冷却媒体として優れている。

2-1 液体窒素循環冷却装置

今までにSPring-8アンジュレータビームラインに設置 された液体窒素循環冷却装置⁽⁹⁾を基本とし、液体ヘリウム 圧縮ポンプの小型化、液体窒素流量計の熱対策、制御ラッ ク内の過電流対策について改良を行い、BL11XUに設置し た。また、制御装置からのインターロック信号を取り込む ために、ビームラインインターロックシステムの改造を、 冬の停止期間に行った。

2-2 ハッチ及びハッチユーティリティーの改造

BL11XU建設当初は、水による間接冷却とピンポスト結 晶を想定していたため、液体窒素循環冷却装置を設置する ためには、ハッチ及びハッチユーティリティーの改造が必 須であった。そこで液体窒素配管用ダクトの設置、冷却装 置専用の冷却水配管及び冷却水ヘッダーの設置、施設分電 盤(通称4LP盤)の追加設置、光学ハッチブレーカー盤 の設置と配線作業などの改造を行った。これらの改造はす べて夏期停止期間に作業を行なった。ハッチに改造を施し たため、秋の運転開始時には光学ハッチ放射線漏洩検査を 受けた。検査の結果、放射線の漏洩は認められなかった。

2-3 分光器の改造

液体窒素循環冷却装置を備えた分光器では、分光結晶と してSi(111)結晶を通常用いている。SPring-8の分光器^[10] は、ブラッグ角の回転範囲が3°~27°である場合が多く、 利用できるエネルギーは4.3keV~37.7keVとなってしま う。それより高エネルギーを使用する場合は、別の回折面 を持つ結晶、例えばSi(311)結晶に交換するか、結晶を交 換しない場合は、Si(333)面を利用することとなる。結晶 を交換するには、液体窒素温度まで冷却されている分光器 を室温まで昇温し、真空ベント作業、結晶の交換作業、そ して結晶のオフライン調整の後、真空引き作業、冷却作業、 オンラインでの結晶調整作業という一連の作業が必要とな る。これらの作業にはおよそ3日間~5日間は必要となる ため、実験サイクル中に結晶を交換することは困難であり、 貴重なユーザー実験時間を圧迫しかねない。また、Si(333) 面では、エネルギー分解能は高いものの、積分反射強度が 小さくなり、入射X線の強度は小さくなることが欠点とな る。よって、分光器を開けることなく、真空かつ低温のま

実験ステーション(原研ビームライン)

まで結晶交換ができれば、これらの問題は一挙に解決できる。そこでBL11XUでは、結晶交換機能を持つ分光器へと 改良した^{III}。

図1 結晶配置 異なる結晶面を持つ複数の結晶を並べ横 (X軸)方向に並進することで結晶面を切り替える。

結晶切り替えの原理を図1に示す。回折面の異なる結晶 を複数個並列に配置する。放射光の光軸と垂直方向に1軸 (X軸)のみを並進走査することで、結晶を容易に交換す ることができる。まず第1ステップとして、同じ大きさの Si(111)結晶とSi(311)結晶を設置した。これにより利用 できるエネルギー範囲は、4.3keV ~ 72.3keVへと広範囲に 利用できるようになった。この方法は、2組の結晶だけで はなく複数組結晶や、面指数あるいは非対称度の異なる結 晶を組み合わせても利用できる。このマルチ結晶分光方式 では、用いる結晶を正確に切り出すことが重要となる。な ぜならば結晶調整に用いる調整軸は、個々の結晶を調節す るのではなく、結晶ホルダー全体を調整するからである。 そのため、結晶の方位出しや結晶のカッティング、結晶の 予備研磨加工まで手作業の下に製作した。

マルチ結晶分光方式のために、分光器に主として5箇所 に改造を施した(図2参照)。結晶を並進させる駆動軸ス

図2 分光器内部 Tx軸、Ty軸、 軸、 x 軸の撤去と、X 軸の改造、 軸の設置、過冷却防止装置設置などの 改造を行なった。

テージ(通称、X1軸ステージ、X2軸ステージ)の駆動 範囲を、既存の±5mm仕様から、±20mm走査可能なス テージへ変更した。この軸を使って、第1結晶及び第2結晶 を並進させる。X軸ステージの駆動範囲を広げたため、既 存の蓋が使用できなくなり、蓋の改造も行った。結晶の振 動の要因となっていたTx軸、Ty軸を撤去し、振動に強い スイベルステージ(軸ステージ)を導入した。また、 軸、×軸も第1結晶部、第2結晶部両方とも撤去し、機械的 な振動が結晶に悪影響を及ぼさないよう考慮した。さらに、 液体窒素の過冷却によるステージが凍結しないように、過 冷却防止装置(温調機構を持つヒーター)をスイベルステ ージと結晶ホルダーの間に挿入した。結晶ホルダーにも改 良を加えている。分光器チェンバー内に熱電対を取り付け ており、結晶ホルダーやステージの温度を常時モニターし ている。また、第1結晶ホルダー、第2結晶ホルダーには、 それぞれ振動計を取り付けている。入射X線の位置と強度 が変動する原因である結晶の振動対策を、今後行う予定で ある.

2個の結晶を並列して結晶ホルダーに固定する方法の健 全性を確認するために、オフラインにてロッキングカーブ を測定した。結晶境界からそれぞれ±10mmの範囲で測定 したところ、半値幅に優位な差は見られず、この固定方法 による結晶の歪は生じていないと思われる。また、X軸ス テージが大きくなることのY軸駆動への影響も測定した。 Y軸駆動のピッチングおよびヨーイングは、当初の分光器 の設計範囲内にあり、荷重変動による影響は見られなかっ た。分光器の改造の結果、Si(111)結晶とSi(311)結晶の 交換作業はわずか3分半で行なうことができる。結晶交換 後の調整作業では、それぞれの結晶での各軸のパラメータ ーを最適化しているので、その値に各軸を設定すれば良く、 これも数分で完了する。通常3日間~5日間は必要である 結晶交換作業が、BL11XUでは数分間で完了する。実験サ イクル中であっても、あるいは一日に何度でも、必要に応 じて結晶の交換が可能となった。実験ハッチへ導かれるX 線の強度は、これまでの人工合成ダイヤモンド結晶の場合 よりも、およそ5倍程度大きくなった。人工合成ダイヤモ ンド結晶の不完全性に起因する強度変化も無くなり、安定 で強度の大きいX線を得ることができた。

(塩飽 秀啓)

3. 放射光メスバウアー分光法による物性研究

実験ハッチ1(上流側)では、放射光メスバウアー分光 法による、局所的な磁性、電子、格子振動状態の観測から、 量子ワイヤー・量子ドット等の応用上重要なナノサイズ構 造体が示す量子サイズ効果を調べている。機器整備面では、 BL11XU備え付けの超単色X線発生装置内に設置されてい る高分解能分光器の改良・交換を行い、2.5meVでの非弾 性散乱スペクトル測定を可能にした。併せて、高速検出器 (APD)の多素子化を進める事で、検出効率の格段の向上 を実現し、基板上に僅かに存在するナノサイズ試料の格子 振動状態密度の測定が可能になった。応用研究として、 Fe量子ワイヤーのフォノン状態密度の測定が行われ、ナ ノ物質系における振動状態等のダイナミクスの変化が調べ られた。本実験により、ナノ物質系に特異な現象として生 じるフォノンの短寿命化が観測された。また、マイクロメ スパウアービームを利用したナノ材料メスバウアー分析法 の開発・応用研究を実現するため、多層膜サジタル集光ミ ラーの設計及びビームラインへの整備を行った。この結果、

20µm以下のビームスポットを利用したメスバウアー分 光実験が可能になった。本装置の整備により、機能性ナノ 薄膜、人工格子を対象とした表面・界面の物性研究が可能 になる。

4.非弾性散乱実験

実験ハッチ2では、硬X線を用いたX線非弾性散乱実験 を行っている。エネルギー分解能は0.1~1eVで、数+eV までの励起の観測が可能である。特に、3d遷移金属の共 鳴散乱を利用した強相関遷移金属酸化物の電子励起の研究 を目的としている。硬X線(6.5~9keV)を用いることに より、運動量依存性の測定が出来るのが特色である。

現在、装置はMnのK吸収端(~6.54keV)に合わせて調 整されている。入射光は、光学ハッチ内のダイヤモンド (111)の二結晶モノクロメータで0.5eVまで単色化され、 さらに、実験ハッチ内の高分解能モノクロメータSi(333) で0.1eV程度まで単色化される。一方、試料から散乱され たX線は、試料から2m離れた湾曲結晶アナライザGe (531) でエネルギー解析されるようになっている。これま で、La1-xSrxMnO3の共鳴非弾性散乱の運動量依存性や偏光 方向依存性、温度依存性、Sr濃度依存性の測定を行って きたが、散乱強度を優先したため、高分解能モノクロメー タを用いない、エネルギー分解能0.5eVの測定が主であっ た。これまでの研究で全体像が掴めたこともあり、2002年 度は、高いエネルギー分解能(約0.25eV)で、非弾性散乱 スペクトルを詳細に調べることに注力した。これにより、 LaosSro4MnO3の約2eVの励起において、0.5eV程度の分散 関係を見出す、等の成果を上げることが出来た。こういっ た結果から、Mn酸化物のフェルミ面近傍の電子構造に関 する知見が得られると期待される。

(稲見 俊哉)

(三井 隆也)

5. 表面X線回折計

BL11XUの実験ハッチ3には、III-V族半導体の分子線エ ピタキシャル(Molecular-Beam Epitaxiy、MBE)成長の メカニズムを解明することを目的として、MBE装置と一 体化した表面X線回折計が設置されている^[12]。本装置を用 いた利用研究 を進める一方で、継続的に装置や制御用ソ フトウェアの改良をおこなっている。

III-V族半導体のMBEにおいては、真空槽内の雰囲気、 とくにV族元素の圧力の制御が重要である。そのためには、 蒸着源周囲の容器内壁を冷却する液体窒素の流量を一定に 保つことが必要になる。そこで、図3に示したような液体 窒素配管を整備し、効果を上げている。加えて、基板温度

図3 真空槽内壁冷却用液体窒素配管

図4 基板温度モニター

図5 RHEED記録用カメラ

実験ステーション(原研ビームライン)

のモニターのための赤外放射温度計(図4)、高速電子線回 折(RHEED)パターン記録用カメラ(図5)を設置し、実 験の能率向上に役立てている。

本年度の利用研究を以下に述べる。

(1) GaAs成長中の表面粗さ変化と表面構造変化の実時間 解析

MBE成長中の基板からのX線回折強度を実時間測定す ることで、原子レベルでの成長過程を理解するための有力 な情報を得ることができる。本課題では、昨年度に引き続 き、ピーク強度および散漫散乱の実時間変化を測定する実 験をおこなった。これにより、表面構造に由来する表面構 造因子と、表面の粗さに由来する減衰因子との時間変化を 分離して測定できることを示した^[13]。

(2) GaAs(001)-2×4表面におけるドメイン境界

GaAsのMBE成長にもっともよく用いられる表面である GaAs(001)-(2×4)において、基板温度の変化とともに特 徴的な幅をもつドメイン境界が形成されることをX線回折 データにより示した。この発見は、GaAs(001)表面の構 造相転移過程を考えるうえで重要である¹¹⁴。

(3) GaAs(001)-c(4×4)構造の解析

量子ドットの作製・磁性半導体の作製に用いられる表面で あるGaAs(001)-c(4×4)について、表面X線回折法による 三次元的な構造解析をおこなった^[15]。

(高橋 正光)

6.XAFSによる構造解析

昨年度まで極限条件下構造解析用高圧プレスが設置され ていた実験ハッチ1下流側のスペースに、XAFS専用実験 定盤を設置した。

使用済み核燃料の乾式再処理においては、ウランなどの 金属回収にCd陰極を、超ウラン元素塩化物の調製に塩化 カドミウムを利用するなど、カドミウムが重要な役割を担 う。BL11XUではそれらの研究の一環として、融体構造や 物性がはっきりしていない塩化カドミウム単独塩融体及 び、実用上重要なアルカリ塩化物との混合溶融状態の構造 をCd原子K吸収端(E0=26.711keV)XAFSによって調べ た。

図6にそのフーリエ変換結果を示す。塩化カドミウムは 固体では6配位であるが、溶融によって4配位になり、そ れにあわせてイオン間距離が短くなることをつきとめた。 また、KCIとの混合融体の結果が単独塩と非常に近いこと から、混合状態でも4配位構造を保っているものと思われ る。イオン間相互作用に敏感なこれらのXAFS測定結果を もとに、塩化カドミウム融体の分子動力学計算を進めてお り、同計算による物性予測、実際の乾式再処理プロセスに おける挙動解明などへ応用する予定である。高温融体の XAFSシグナルは、図6の溶融によるピーク高の減少から も明らかなように一般に微弱であり、また高温で不活性な

図6 溶融CdCl2及びCdCl2-KCL(1:1)のフーリエ変換 絶対値 FT(k³(k))

溶融塩測定では短時間測定が必須である。H14年度に整備 された液体窒素冷却分光器による強度のアップが、高温融 体測定における精度向上や短時間測定により有効に働くと 期待できる。

(岡本 芳浩)

参考文献

- [1] H. Shiwaku, T. Harami, Y. Katayama, T. Fukuda and M. Takahashi : SPring-8 Annual Report 1997 (1998) 111.
- [2] 塩飽、三井、他: SPring-8利用者情報 36(1998) 29.
- [3] H. Shiwaku: SPring-8 Annual Report **1998** (1999) 77.
- [4] 小西、塩飽、他: SPring-8利用者情報 4 5 (1999) 4.
- [5] H. Shiwaku, H. Marushita, T. Mitsui, Y. Katayama,
 T. Inami and M. Takahashi : SPring-8 Annual Report 1999 (2000) 79.
- [6] 塩飽、三井、片山、高橋: SPring-8 年報**2000**年度 (2001) 111.
- [7] 塩飽、片山、高橋、稲見: SPring-8 利用者情報 6 4 (2001) 280.
- [8] 塩飽、三井、片山、稲見、高橋: SPring-8 年報 2001年度(2002) 114.
- [9] T. Mochizuki et al. : Nucl. Instrum. Methods A467-8 (2001) 647.
- [10] M.Yabashi et al. : Proc. SPIE 3773 (1999) 2
- [11] 塩飽、三井、戸澤:第16回放射光学会年会・放射光科学合同シンポジウム.
- [12] M. Takahasi, Y. Yoneda, H. Inoue, N. Yamamoto and J. Mizuki : Jpn. J. Appl. Phys. 41 (2002) 6247.
- [13] M. Takahasi, Y. Yoneda, H. Inoue, N. Yamamoto and J. Mizuki : J. Cryst. Growth 251 (2003) 51.
- [14] M. Takahasi, Y.Yoneda, N.Yamamoto and J. Mizuki (Submitted.)

– 実験ステーション(原研ビームライン) —

[15]高橋正光、米田安宏、水木純一郎:第50回応用物理 学関係連合講演会27p-V-2 (2003)

> 日本原子力研究所・関西研究所 利用系開発グループ 塩飽 秀啓 重元素科学研究グループ 重井 隆也 重元素科学研究グループ 稲見 俊哉 構造物性研究グループ 高橋 正光 日本原子力研究所・東海研究所 アクチノイド科学研究グループ 岡本 芳浩