BL20XU 医学・イメージングⅡ

1. 概要

現在SPring-8では、イメージングビームラインを中心と して、X線マイクロCTを用いたユーザー利用実験が行わ れている。BL20XUにおける共同利用実験においても、ア ンジュレーターからの高輝度X線を生かした工業材料や生 体試料の高分解能マイクロCT実験が多い。しかし、試料 形状によってはX線マイクロCTでの測定が困難な場合が ある。例えばプリント基板のような平板状試料に対しては 通常のX線マイクロCTは適用できない。そこで、このよ うな試料に対しても非破壊3次元イメージングが行える手 法として、X線マイクロラミノグラフィー法を開発した。

2. X線マイクロラミノグラフィー法の開発

X線マイクロラミノグラフィー法の測定光学系を図1に 示す。測定における投影像の取得プロシージャは、X線マイ クロCTとほぼ同じであるが、決定的に異なる点は試料の回 転軸を入射X線に対して傾斜させている点である。X線マ イクロCTの測定では、試料の回転軸はX線の光軸に対し て垂直であるので、平板状試料の場合、試料の設置状況に よっては、X線が試料内部を長い距離通過しなければなら ない領域が存在する。この場合、画像再構成に必要となる 十分なX線透過率が得られないと同時に、試料全体の大き さは検出器の有効視野よりも遥かに大きい場合がほとんど であるため、画像再構成はおろか、投影像を取得する測定 自体が困難となる。一方で、X線マイクロラミノグラフィ ー法では、回転軸の傾きを傾斜させるため、図1に示す平 板試料のように、検出器の視野より大きな試料に対しても、 ある関心領域の内部構造情報を、透過投影像として得るこ とができる。この投影像を元にして、画像再構成処理を行 うことにより、X線マイクロCTと同様に、試料の断面像

図1 X線マイクロラミノグラフィーの測定光学系。

を得ることが可能となる。

X線マイクロラミノグラフィー法における投影像取得と 画像再構成の概念を図2に示す。投影像に関しては、*X-Z* 面で得られるのに対して、再構成によって得られる断面は *X'-Y'*面となる。再構成は、フィルター補正逆投影法をベ ースにしている。図2(b)に示すように、フィルター補正 した2次元投影像を再構成面に対して斜めに逆投影し、そ の処理をθに関して360度方向から行うことにより、その 面の構造情報が強調されていき、最終的に断面像として画 像化することができる。このような再構成原理上、X線ラ ミノグラフィー法はデジタルトモシンセシスというような 呼ばれ方をすることもある。X線マイクロラミノグラフィ ー法の画像再構成演算処理は、次のように表わすことがで

きる。

$$F(X',Y',Z') = \int_0^{2\pi} P(X,Z,\theta) d\theta$$

ここで、

 $\begin{cases} X = X' \cos \theta + Y' \sin \theta \\ Z = X' \sin \varphi \sin \theta - Y' \sin \varphi \cos \theta + Z' \cos \varphi \end{cases}$

である。 θ は試料の回転軸に対する回転角、 ϕ は回転軸の 傾斜角である。式中で使用した座標系は、図2(a)の座標 系に一致している。 $P(X, Y, \theta)$ は、フィルター補正後の 投影像であり、以下のように表わされる。

 $P(X, Z, \theta) = \int \left[\int p(X, Z, \theta) \exp(-i2\pi X\rho) dX \right] \cdot g(\rho) \exp(i2\pi X\rho) d\rho$

この式で $p(X, Z, \theta)$ は、検出器によって得た2次元の投 影像である。また、 $g(\rho)$ はフィルター関数である。上 記の式で、回転軸の傾斜角 ϕ を0とすると、X線マイクロ CTにおける画像再構成演算式と等価になる。

X線ラミノグラフィー法の測定では、回転軸を傾斜させ て試料を回転させるため、特に高分解能測定においては、 回転ステージの偏芯精度や、回転ステージ上に取り付けら れる試料位置合わせ用の小型並進ステージの剛性が再構成 画像に大きな影響を与える。回転ステージに関しては、剛 性の高いボールベアリングガイド方式のステージを採用す ることで、回転中の芯ブレの影響を抑えることができてい る。小型並進ステージは、面積の大きな試料のある特定領 域を測定するための位置合わせ用として必要であり、開発 初期では傾斜時にステージのロックが可能な手動並進ステ ージを使用した。その後、試料の関心領域を高い位置合わ せ精度で測定するために、透過X線像を見ながら試料の位 置合わせを行えるような小型モーターを搭載した並進ステ ージを導入した。当初は試料及びホルダーの重さにより、 回転中に並進ステージに微小ながら変位が生じるという問 題が生じたが、ステッピングモーター仕様のカウンターバ ネ付き小型並進ステージ(型式:QKSU-XZ、神津精機社 製)を導入することにより、この問題を解決できた。

3. X線マイクロラミノグラフィー法による平板試料の測定

X線マイクロラミノグラフィー法による測定として、Si チップ(大きさ10 mm×10 mm)を、はんだバンプ(Sn-3.0Ag-0.5Cu)を用いてFR-4基板(ガラス繊維の織物を樹 脂で固めた複合素材)に接合したものを用いた。X線マイ クロラミノグラフィー法を用いることで、はんだバンプの 熱疲労による微細組織の変化及び疲労き裂の発生、進展現 象を非破壊でとらえ、基板の信頼性を評価することを目的 としている。はんだバンプは直径100 μm、各はんだバン プ間隔200 μmで、総数44×44 = 1936個が並んでいる。実 際の測定では、はんだバンプをすべて測定するのではなく て、その一部を高空間分解能で測定する。測定で使用した X線検出器は、ビームモニター3 (×20対物レンズ)と CCDカメラ (C4880-41S、浜松ホトニクス社製)の組み合 わせであり、画素サイズは0.5 μm (2×2 binning)である。 図3に、基板に対して平行なはんだバンプ接合部の断面を 示す。基板の状態のまま、試料の関心領域を非破壊かつ高 分解能で測定できていることがわかる。

図3 基板に対して平行なはんだバンプ接合部の断面像。 【測定条件】X線エネルギー:29 keV、投影数:3600投影/360 度(0.1度ステップ)、露光時間:0.3 sec/1投影、回転軸の 傾斜角 ¢:20度、試料の中心と検出器間の距離:30 mm。 試料画像提供:富山県工業技術センター 佐山利彦氏

4. 今後の展望

X線マイクロラミノグラフィー法は、X線マイクロCTと 同様に非破壊3次元イメージング法であり、X線マイクロ CTの相補的な測定法として位置付けることができる。図3 に示したような平板試料をはじめ、有機・無機物質やソフ トマテリアルなど、X線マイクロCTでは測定が困難な形 状を持つ試料への応用が期待される。試料形状に応じて、 X線マイクロCTとX線マイクロラミノグラフィー法を使い 分けることにより、ユーザー実験においてこれまでよりも 幅広い試料に対して、非破壊3次元イメージングが行える と思われる。また、X線結像CTと同様に、ラミノグラフ ィー法もX線結像光学系に導入することが可能であり、よ り高い空間分解能で測定を行うことも可能である。

利用研究促進部門

バイオ・ソフトマテリアルグループ 星野 真人、鈴木 芳生、竹内 晃久 上杉 健太朗、八木 直人