BL15XU 広エネルギー帯域先端材料解析

1. 概要

本ビームラインは、独立行政法人物質・材料研究機構 の専用ビームラインであり、弊機構における新規機能物 質・材料を開発するため、高輝度放射光を用い電子構造並 びに原子配列構造を解析している。2012年度も滞りなく SPring-8を利用した研究を進めたり、関連する研究を支 援したりした。本年報は、ビームタイムの利用や装置の整 備の状況を報告する。

2. ビームタイムの利用状況

2012年度には合計70件の利用研究課題が実施された。 光電子分光法 (XPS) を用いた電子構造に関する研究と回 折法 (XRD) を用いた原子配列構造に関する研究をその 実施シフト数を基に大別すると(図1)、約65%がXPSを 用いた課題であった(XPS: 265.5、XRD: 143シフト)。 また図中の件数はそれぞれの課題数を示している。2012 年度の総応募数74件に対し採択課題数は70件であり、課 題の採択率は約95%であった。2011年度に比して9ポイ ント採択率は上昇している。実施シフト数を研究の目的や 材料別に分類したものが図2である。調整は、XPSと XRDの切り替え時に要した時間がほとんどである。調整 および方法・装置開発に約33%を利用しているが、これ は2011年度の約39%と比べ若干減少している。2012年 度からは文部科学省ナノテクノロジープラットフォーム事 業が開始され、本ビームラインは本事業の13課題に対し 支援した。

図2 実施内容によるシフト数の内訳

3. ビームラインの整備

2012年度はビームラインの整備・高度化として、硬X 線光電子分光のためのX線移相子のビームラインへの設 置、高分解能粉末回折計の半導体1次元検出器の2台化な どを実施した。

3-1 高分解能粉末回折計の半導体1次元検出器の2台化

BL15XUの高分解能粉末回折計には、自動試料交換-セ ンタリング装置と1次元半導体検出器 Mythen やイメージ ングプレート(IP)カメラと一体的に動作させて多数の試 料からの粉末回折強度データを連続的に収集するシステム が装備されている。このシステムでは、Mythenモードの 場合には完全自動データ収集が可能であるが、高角度分解 能を実現するために大半径カメラを採用したため、検出器 が1回の測定でカバーできるデータの20範囲が約3.8° と小さく、結晶構造解析に必要な全データを収集するため には、2θ方向に検出器をスキャンしなければならない。 このため、Mythenモードでより短時間でのデータ収集が 可能となるように、将来的な検出器の増設も考慮し最大4 台の Mythen 検出器を装備できる新しい2θアームを製作 し、2012年度は2台目のMythen検出器を粉末回折計に 組み込んだ。2台体制となったことに対応して、測定プロ グラムを改造した。さらに、データ処理用ソフトウェアを

大型放射光施設の現状と高度化

開発した。具体的には回折計の幾何学的関係や実測データ を組み合わせて20の角度補正を行い、強度データのスケ ーリングを実施して各検出器からのデータを連結したもの をユーザーに渡すようにした。標準試料を用いた評価の結 果、Rietveld法に十分な精度の回折強度データを取得でき ることを確認した。

3-2 HXPESの電圧印加測定について

(1) 電圧印加 XPS マニュピュレーターに関して

電圧印加XPSサンプルホルダー受け(図3)は4端子構 造を用いており、FET動作下での電子状態も測定してい る。電圧印加XPSマニュピュレーターはθ(鉛直軸回転)、 φ(水平軸回転(赤丸部分))回転機構の採用により、光 電子の脱出角依存性を測定する際ほぼ同じ領域の測定が可 能になった。これにより1軸回転の際、光電子の同領域が 測定できなかった問題を解決した。

(2) 電圧印加 XPS 測定時のサンプル受けおよび配線等の 接触抵抗に関して

真空内でサンプル交換時に、サンプル受けおよびサンプ ルホルダー間の接触抵抗は0.01オーム以下(図4赤丸部 分)に保つよう工夫されている。また出力ケーブルも0.1 オーム以下に保たれており、デバイス動作下で光電子分光 を行う際、デバイス以外でのポテンシャルドロップが無視 できる。また、電源の入力端子はどのような電源にも対応 できるようにしており、ロータリスイッチにより、電源を 取り外すことなく、測定するサンプルを選定できる。

(3) 電圧印加 XPS 用サンプルホルダー

電圧印加 XPS 用サンプルホルダーは白色のセラミック 積層構造に金のパッドを埋め込んだ構造であり、セラミッ ク部分にサンプルをセットし、金のパッド部分にサンプル の配線を行う(図5赤丸部分)。ユーザーにはサンプルホ ルダーを前もって必要個数送り、研究室内でデバイスの配 線等を行い、特性を事前にチェックできるようにしている。 ユーザーが SPring-8に来てから生じていたサンプルの配 線トラブルが激減し、効率の良い測定が可能となった。こ の結果、デバイス特性を保った状態で測定を行っている。

(4) 代表的な実験例および成果

本手法により、明らかになった研究成果は次のとおりで ある。ゲートスタック構造内のポテンシャル分布の電圧依 存性^[1]、抵抗変化メモリのメカニズム解明^[2]、界面電子 状態の電圧依存性^[3]、燃料電池/電極間のメカニズム解 明^[4]。

図3 電圧印加 XPS サンプルホルダー受け

図4 サンプル受け

図5 サンプルホルダー

参考文献

- [1] Y. Yamashita, et al.: ECS Transactions **41** (2011) 331.
- [2] T. Nagata, et al.: Appl. Phys. Lett. 99 (2011) 223517.
- [3] Y. Yamashita, et al.: J. Appl. Phys. **113** (2013) 163707.
- [4] T. Tsuchiya, et al.: Sci. Technol. Adv. Mater. 14 (2013) 045001.

(独)物質・材料研究機構田中 雅彦、勝矢 良雄、山下 良之、坂田 修身