BL33XU 豊田ビームライン

1. はじめに

BL33XU(豊田ビームライン)は、(株)豊田中央研究所 が管理・運営するビームラインである。2009年4月にコミ ッショニングを行い、2009B期より利用を開始している。 ビームライン建設は2段階に分かれており、2009年度末 までに、高速XAFS測定技術を中心とした第1期分が完了 し、2011,2012年度に第2期の設備導入を実施した。第2 期では、豊田ビームラインのもう一つの柱である3次元X 線回折(3DXRD)顕微鏡法の実現を一番の目的としてい るが、他の汎用的な分析手法の導入も同時に実施している。

2. ビームライン・実験装置の概要

この節では主に2期設備導入による追加・変更機能を説 明する。

2-1 全体構成

実験棟内に実験ハッチ3を設置した。これにより、実験 ハッチ2では高速XAFS測定、X線小角散乱測定を、実験 ハッチ3ではX線回折測定、走査型3DXRD顕微鏡および マイクロビームを用いた測定装置を常設できるようになっ た(図1)。また、実験ハッチ3はマイクロビームを用い た長時間にわたる測定を安定して実施できるように、精密 温度空調器を設置し、壁と天井を断熱仕様としている。

図2 豊田ビーム	ラインのう	七学系構成
----------	-------	-------

	水平反射ミラー対	分光器	エネルギー範囲	垂直反射ミラー対
第1光学系	M1,M2 Pt/Rh コート 1.5 mrad 固定 ベンド機能(M2)	コンパクト分光器 液体窒素冷却 Si(111) Si(220)	4.5-27 keV 6.5-45 keV	M3,M4 Pt/Rh コート 退避、1.5~8 mrad ペンド機能
第2光学系	_	2結晶分光器 液体窒素冷却 Si(111) Si(311)	4.5-35 keV 8.8-72 keV	M4,M5 Pt コート 退避,1.5~6 mrad ベンド機能(M4)

表1 光学系の構成と主な特性

2-2 光学系

これまでのコンパクト分光器に加えて、光学ハッチ内に 液体窒素冷却2結晶分光器を設置した。分光器の増設によ り、本ビームラインはほぼ独立した2つの光学系を有する ことになった(図2)。それぞれの光学系は第1ミラーの 挿入/退避によって切り替えられるため、2結晶分光器を 用いる時は水平方向の集光ができない。また、高次光カッ トのために実験ハッチ2内に第5ミラーを追加設置した。 それぞれの光学系の仕様を表1にまとめる。

2-3 XAFS

本ビームラインの特徴のひとつに高速XAFS測定がある が、従来は計測系エレクトロニクスの制約により、その機 能を十分に発揮できていない面があった。以前に用いてい た A-D 変換器 (Yokogawa 製 WE7272) は最大変換レー ト 100 kS/秒 (16 bit) で 100万データしか一度に計測で きなかったため、最大レートでは 10 秒以上の連続測定が できなかった。新たに導入した A-D 変換器 (National Instruments 製 PXI-5922) では最大変換レート 1 MS/秒 (22 bit) でハードディスクにデータ保存できるので、高 速・高精度での長時間連続測定も可能となった。

検出器に関しても、応用光研工業製 高速型イオンチェ ンバー、Vortex製 4素子 SDD、DECTRIS製 PILATUS 300Kの導入に加えて、高温転換電子検出器、高温蛍光検 出器等を開発して各種のXAFS測定に対応できるようにな っている。

2-4 走查型3DXRD 顕微鏡

3DXRD法による金属材料内部の塑性変形挙動を非破壊 で観察する手法は、これまでにも複数報告されている^[1]。 しかし、主に試料断面の結晶粒数の制限から実用材料の解 析への適用は難しいと考えられた。そこで、我々は3DXRD を応用した走査型3DXRD顕微鏡法を提案し、その実証実 験を実施した(4.研究事例で報告)。実証実験ではスリッ トで20 µm角に制限したビームを用い、想定された金属 内部の構造解析が可能であることを示した。本測定用の装 置は、現在、立上げ・調整中で運用は2014年度からを予 定している。本測定では、K-Bミラーにより数µm以下の マイクロビームを用いることで、より高分解能での 3DXRD顕微鏡測定を計画している。

2-5 X線回折·小角散乱

X線回折用の多軸ゴニオメーター(Huber 製)に専用の 架台と水平2θ軸を追加し、PILATUS等の2次元検出器 を用いた回折測定も可能とした。

小角散乱用の2次元検出器としてDECTRIS 製 PILATUS 300Kを導入した。カメラ長は最大で約5 m である。

3. 利用状況

2012年度に実施した実験課題数は25課題であった。測 定対象は排ガス浄化触媒や2次電池等の自動車に関係する 環境・エネルギー関連材料が中心であるが、他に、ゴム材 料や半導体材料の測定に加えて、3DXRDの予備検討実験 を実施した。測定手法としては、XAFS測定が全体の約7割 を占めており、他には回折による応力測定、小角散乱を行 った。これらの傾向は、ほぼ2011年度までと同じである。

4. 研究事例

豊田ビームラインを用いた成果として2012年度には、 論文4報、口頭発表またはポスター発表15件の発表を行った。それに加えて、第9回SPring-8産業利用報告会に おいて、第3回豊田ビームライン研究発表会として口頭発 表2件とポスター発表7件を実施している。以下に、豊田 ビームラインならではの研究事例を紹介する。

(1) 自動車排気用触媒の Operando XAFS 解析^[2]

触媒の活性評価と放射光による触媒の状態解析とを同一 触媒で同時評価することにより、より詳細な反応機構の議 論が可能となる。このような手法はOperando XAFSと呼 ばれ、近年の高速XAFS測定技術の進歩と相まって、触媒 の分野で盛んに行われるようになってきた。BL33XUで は、自動車の排ガス環境を模擬した各種ガス雰囲気下での その場観察が常時可能であるという特長を有している。

今回実施した実験手法の一例を示す。通常の含浸法で 調製した Cu (6wt%) /CeO₂ 触媒 20 mg を 500 °C にて酸 化前処理を行った後、下記の Rich および Lean ガス (100 ml/min) を 30 sec 毎に交互 (Periodic) に触媒に通 過させながら、室温から 500 °C まで 10 °C/min の速度で昇 温させた。

1) Periodic

Rich (30sec) :O₂ (0%) +CO (0.65%) +NO (0.15%) +C₃H₆ (0.3%C) +H₂O (3%) /He

Lean (30sec): O₂ (0.8%) 以外は Rich と同じ

また、上記変動評価の比較として、下記のSlight rich 定常(Static)雰囲気における評価も行った。

2) Static

Slight rich: O₂ (0.4%) 以外は上記Richと同じ

同時に評価中における触媒のCu K-edge および Ce K-edge XAFSスペクトルを所定の間隔で測定しCuおよび Ceの酸化状態を調べた。

図3 a) は Periodic および Static 昇温評価における Cu の酸化状態の変化を示している。Periodic における Cu は、Static に比べ低温から還元された。さらに、図3 b) に示 されるように、Periodic における Cu および担体 Ce の酸

図3 昇温評価でのCuのa)酸化状態変化およびb)CuとCe の価数変化の同期

化状態も雰囲気に応じて変動し、Ceの価数変動周期はCu の変動と同期(シンクロ)した。この時のNO浄化活性に ついては、PeriodicにおけるNO浄化活性はStaticに比べ 高活性であった(図4)。Periodic評価において、Cuと Ceの価数変化がシンクロすることにより、Cuの低温での 還元性が高まり、NO浄化活性が向上したと考えられる。

(2) 走査型 3DXRD 顕微鏡の開発^[3, 4]

3DXRD法の解析では基本的には図5のように2次元検 出器上で回折斑点が重ならないようにする必要があるた め、X線が一度に入射する結晶粒数に上限がある。典型的 な3DXRD法では入射X線ビームとして図5のz方向に1 次元集光させたx方向に広いラインビームを用いており、 試料外径を極端に細くしなければならないことから、試料 内部が試料加工層により損傷を受けたり、試験ハンドリン グの困難が予想される。そこで我々は、入射ビームをx方 向にも集光した2次元集光ペンシルビームを利用する走査 型3DXRD手法を新たに検討した。

集光装置を立ち上げるに先立って入射ビーム(40 keV) に x 方向及び z 方向制限スリット(20×20 μ m)を用い て実験を行った。試料は粒径を入射ビームサイズより粗大 化させた純鉄線(平均粒径 60 μ m,外径 500 μ m,フェラ イト単相)とした。図5のように回転と x 軸の2 軸走査に より xy 面内の2次元結晶方位マッピングを測定し、それ を z 方向に積み重ねることにより得た3次元方位マッピン グを図6に示す。3DXRD法で観察した断面を切り出して 電子線後方散乱回折法(Electron Backscatter Diffraction: EBSD)法で観察した結果、EBSD法で観察 された結晶粒はほぼ全て3DXRD法で観察された。

参考文献

- [1] 例えば、H.F. Poulsen, "Three-Dimensional X-Ray Diffraction Microscopy" Springer (2004).
- [2] 長井康貴 他: SPring-8 利用課題実験報告書 2012B7001

図5 豊田ビームラインにおける 3DXRD 顕微鏡法の実験セッ トアップ

図6 粗大粒化フェライトの結晶方位3次元マッピング

- [3] 林雄二郎: SPring-8 利用課題実驗報告書 2012A7002, 2012B7002
- [4] 林雄二郎、広瀬美治: SPring-8 利用課題実験報告書 2011B7002

(株)豊田中央研究所 分析研究部堂前 和彦