BL15XU 広エネルギー帯域先端材料解析

1. 概要

本ビームラインは、独立行政法人物質・材料研究機構 の専用ビームラインであり、機構における新規機能物質・ 材料を開発するため、高輝度放射光を用い電子構造並びに 原子配列構造を解析している。2013年度も滞りなく SPring-8を利用した研究を進めたり、関連する研究を支 援したりした。本年報は、ビームタイムの利用や装置の整 備の状況等を報告する。

2. ビームタイムの利用状況

2013年度の利用研究課題は合計で62件が実施された。 2013年度の総応募数65件であり、課題の採択率は約 95%で、2012年度と同程度の採択率であった。プロジェ クト別では、a) NIMS 内部課題(30%)の他に、b)文 部科学省ナノテクノロジープラットフォーム(37%)、c) 東工大元素戦略(19%)、d)ナノ材料科学環境拠点(6%)、e) 共同研究(8%)の実験課題にビームタイムを提供した (括弧内はシフト数での割合)。光電子分光法(XPS)を用 いた電子構造に関する研究と回折法(XRD)を用いた原 子配列構造に関する研究をその実施シフト数を基に大別し たのが図1である。約53%がXPSを用いた課題であった (XPS:187、XRD:167 シフト)。また図中の数値はそれぞ れの課題数を示している。

実施シフト数を研究の目的や材料別に分類したものが 図2である。調整は、XPS とXRD の切り替え時などに要 した時間である。調整に約18%を利用しているが、ユー

ザーの要望する実験装置、実験条件の多様化で調整時間は ある程度確保せざるを得ない状況にある。

3. ビームラインの整備

2013年度もビームラインの整備・高度化を継続してい る。ビームライン光学系としては、ビームライン安定化シ ステム MOSTABの導入を実施した。これにより波長切り 替え時等の迅速な光学系の安定が可能となった。

3-1 X線回折

粉末回折計の Mythen 多連装化

BL15XUの高分解能粉末回折計には、自動試料交換セ ンタリング装置と1次元半導体検出器 Mythen を一体的に 動作させるシステムが装備され、自動データ収集が可能で ある。2013 年度はデータ収集の迅速化を目指して、 Mythen 検出器の多連装化を進め、まず4連装モードを完 成した。4連装モードは4台の Mythen を半径955 mmの 円周上に3.5度間隔で配置し、回折強度データの収集は検 出器間隔を埋めるように動く小ステップと検出器全体を大 きく動かす大ステップの組み合わせによる尺取虫方式のス テップスキャンにて実施している。4台の Mythen による 測定で、高角度分解能性能を落とすことなくより迅速な測 定動作が可能となった。

図3 6連装 Mythen モードの粉末回折計

4連装モードでは測定のスループットは向上したもの の、必要な全回折データを切れ目なく収集するためには、 2 θ スキャンが必要であり、ダイナミックな構造変化を追 跡するような時分割測定には適さない。そこで2 θ スキャ ンすることなく全回折データの収集が可能となるように検 出器を非対称に配置した6連装モードを開発した。6連装 モードでは Mythen 検出器はその間隔を互いに埋めるよう な形に2 θ の正負方向で非対称に配置され、70°以上の2 θ 範囲をスキャンすることなくカバーできる。試料 – 検出 器距離は286.5 mmであり、2 θ の最小分解能は0.01°に 相当する。2 θ スキャンが必要ないために、電池の充放電 過程の追跡などの時分割実験に有効である。

吹付け高温装置

これまでBL15XUの粉末回折計には吹付け低温装置が 装備され、構造相転移の研究に活用されてきたが、室温よ り高い温度範囲については400 Kが上限であった。しか し構造相転移の研究においてより高い温度範囲の実験が可 能であることが望まれていた。そこで新たに1000 Kまで 加熱することが可能な吹付け高温装置を導入した。

3-2 硬X線光電子分光

硬X線光電子分光法は光電子の平均自由行程が非常に大 きいことから、デバイスもしくは材料構造を保持した状態 での電子状態測定が可能である。BL15XUでは、この特 徴を活かしデバイス構造を保持した状態でデバイス動作下 での電子状態の観測を行っている。本手法はデバイス動作 下での電子状態の変化を直接的に観測できることから、新 規デバイス及び新規材料の物性解明、デバイスのメカニズ ム解明等に適しており、これまでに種々の研究成果を出し てきている^[1-4]。

2013年度においては、溶液の電気化学反応のその場観 測、極薄酸化膜中/半導体界面の界面準位のエネルギー分

図4 バイアス印加硬X線光電子分光のセットアップ(上) バイアス印加時のSi 1s スペクトル(下)

は3 3 15 (図4) 及びなコアレイルのパイアス 依存性の解析より得られたバイアス印加時の ポテンシャル分布図

布の直接観測(図4,5)、ゲートスタック中の電圧に依存 したポテンシャル分布の直接観測、固体電池の分極のメカ ニズム解明を行う事に成功している^[1-4]。今回紹介した成 果はNIMSのナノエレクトロニクス材料グループ、ナノシ ステム材料グループ、固液界面解析グループによる共同研 究による成果であり、NIMSビームラインの硬X線光電子 分光装置がNIMSの材料分野の発展に継続的に貢献してい ることがわかる。

謝辞

MOSTAB の導入に際しては(独)理化学研究所・放射光 科学研究センターの工藤統吾氏の助力を戴きました。ここ に謝意を表します。

大型放射光施設の現状と高度化

参考文献

- T. Masuda, H. Yoshikawa, H. Noguchi, T. Kawasaki, M. Kobata, K. Kobayashi and K. Uosaki: *Appl. Phys. Lett.* **103** (2013) 111605.
- [2] Y. Yamashita, H. Yoshikawa, T. Chikyow and K. Kobayashi: J. Appl. Phys. 113 (2013) 163707.
- [3] Y. Yamashita, H. Yoshikawa, T. Chikyow and K. Kobayashi: Jpn. J. Appl. Phys. 52 (2013) 108005.
- [4] T. Tsuchiya, S. Miyoshi, Y. Yamashita, H. Yoshikawa, K. Terabe, K. Kobayashi, S. Yamaguchi: *Solid State Ion* 253 (2013) 110.

(独)物質·材料研究機構

田中 雅彦、勝矢 良雄、山下 良之、坂田 修身