BL31LEP レーザー電子光 II

1. ビームラインの概要

BL31LEPは、ビーム強度の増強や検出器の大型化を意 図して建設された2本目のレーザー電子光ビームラインで ある。高出力の複数レーザーの同時入射によるビーム強度 の一桁近い向上と、蓄積リング棟外の広いスペースに専用 実験棟を建設し、大立体角・高分解能検出器を設置して実 験を行うことを2つの目玉としている。

図1にレーザールーム内に置かれたレーザー入射システ ムの様子を示す。上下2段に各2台の計4台までのレーザ ーが設置され、エクスパンダーを通過した各レーザー光は 2枚のミラーで角度調整された後、上下それぞれのプリズ ム型ミラーで同方向に収斂し、更に3枚のミラーを通って 加速器収納部側壁からBL31LEPフロントエンド部に入射 する。フロントエンド部ミラーチェンバー内の第1ミラー はX線損傷を避けるために中央にスリットの入った上下分 離型のミラーとなっており、レーザー光は90°反射され て、蓄積リング内に入射し、その焦点において8 GeV電 子ビームと衝突する。長直線ビームラインでは電子ビーム の角度発散が非常に小さいため、逆コンプトン散乱によっ て生じた高エネルギーガンマ線ビームの平行性は最良であ り、衝突点から下流135mにあるLEPS2実験棟内まであ まり拡がることなくビームが導かれる(標的上で半値幅 15 mm 程度)。

BL31LEPにおけるLEPS2実験のための装置としては、

図1 BL31LEP レーザールーム内のレーザー入射システム。上下2段に各2台ずつの計4台のレーザーが設置され、エクスパンダーを通過した各レーザー光は2枚のミラーで角度調整された後、上下それぞれのプリズム型ミラーで同方向に向かう。

米国ブルックヘブン (BNL) 研究所より移設された大型 のソレノイド電磁石(直径5m、重さ400t)を用いた大 立体角荷電粒子スペクトロメータと東北大学電子光理学研 究センターにおいて開発された大立体角高分解能電磁カロ リメータBGOeggを装備する。BL33LEP(LEPS実験)で のハドロン光生成実験において、ペンタクォーク粒子Θ+ の存在の示唆やバリオン共鳴状態の研究などで重要な成果 を得てきたが、LEPS2実験では標的回りを覆う大型高分 解能検出器を駆使することで、生成機構と同時に崩壊機構 も解明し、より詳細に高統計精度で光核反応実験によるク ォーク核物理学研究を進めることができる。ソレノイドス ペクトロメータ用の磁石内部に入る検出器群(大口径飛跡 検出器や粒子識別検出器)は、2015年度中の完成を目指し て順次、開発・製作中である。BGOegg検出器については 2012年度の本体設置に引き続いて、読み出し回路系や、付 随して用いられる TOF (Time of Flight) 測定用検出器等 の準備が進み、2013年12月にはテスト実験が開始された。

2. ビームライン及びソレノイド電磁石のコミッショニング

2013年1月の最初のレーザー電子光ビームの生成成功 を受けて、2013年度はビームラインのコミッショニング を行った。先ず、4月のマシンスタディにおいて蓄積電子 ビームの軌道補正を行い、LEPS2実験棟内標的位置で約 10 mm低かったビーム位置を、ほぼ中心に来るように調 整した。

逆コンプトン散乱によって得られたガンマ線のエネルギ ーは、反跳された電子のエネルギーを測定することによっ て光子ごとに決定することができる。蓄積リング長直線部 下流の偏向電磁石(BM1)が散乱電子の運動量分析器と なり、BM1下流のクロッチチェンバーに散乱電子の引き 出しスロットを設けて、そこに位置検出器を置くことでエ ネルギーをタギングする。タギング・カウンターとしては、 BL33LEPで使用している検出器とほぼ同様のシンチレー ティング・ファイバー・アレイとプラスチックシンチレー タ・ホドスコープから成るものを使用することとした。し かし、BL31LEPではクロッチ・アブソーバーとスロット 壁の位置関係をBL33LEPの物と少し変更していたため に、スロット壁に平行に並べるセットアップでは多量のX線 バックグラウンドのために検出器が正常に動作しないこと が判明した。そこで、X線遮蔽の方法と検出器の最適位置 を決めるためのR&Dを繰り返し、遮蔽体を通さずに直接 アブソーバーが見えない狭い領域に検出器を配置すること

で、何とかバックグラウンドの問題を解決した。

LEPS2実験棟内に設置された大型ソレノイド電磁石に 対しては、それを励磁するための直流安定化電源(4800 A、 320 V)が新たに導入され(図2)、そのための受変電設 備の増設を行った。電磁石へのケーブル配線、及び冷却水 の配管工事を行った後、夏に励磁試験を行い、米国での使 用停止から約10年を経ていたが、問題なく動作すること を確認した。発生磁場は、電流値4400 Aで中心磁場0.9 T であった。

図2 BNLから移設した大型ソレノイド電磁石用に新規導入した、最大出力電流4800 Aの直流安定化電源。

3. BGOegg実験

BGOegg検出器本体は、長さ220 mm (20放射長)の Bi₄Ge₃O₁₂ (BGO)結晶 1320本を、卵型に組み上げた形 状をしており、高エネルギー分解能(1 GeV ガンマ線に 対して 1.3%)で大立体角(24°~144°の極角領域)を 覆う電磁カロリメータである(図3、左図)。稠密にセグ メント化してあるため、電磁シャワーの重心から3 mmの 分解能で入射位置も求められる。BGOegg 内側には荷電粒 子検出用のインナー・プラスチックシンチレータと円筒型 ドリフトチェンバー (CDC) が組み込まれ、また、前方 に抜ける荷電粒子に対しては、ドリフトチェンバー (DC) と標的から約12 mの距離に2 m×3.5 mの高抵抗板チェ ンバー (RPC) ・アレイを設置して、方向と飛程時間の測 定を行う。

BGOegg実験はLEPS2プロジェクトの最初の実験とし て遂行され、その主要テーマとして、 η 、核(η ,中間子が 原子核に束縛された状態)の探索を行う。 η ,中間子は $U_A(1)$ 異常と呼ばれる効果のために他の擬スカラー中間子(π 、 η)よりも2倍以上大きい質量を持っているが、最近の理 論研究によれば、ハドロン質量の起源の鍵となるカイラル 対称性の自発的破れが有限密度では部分的に回復する効果 と $U_A(1)$ 異常とが関係して、 η 、メソンは原子核中で質 量が大きく減少し、引力ポテンシャルにより原子核に束縛 されると予想されている。

信号・高圧ケーブルの配線や読み出し回路系、及びデー タ収集プログラム等の整備を経て、2013年12月にテスト 実験を開始した。図3の右図にBGOeggで検出された2つ のガンマ線から計算された不変質量分布を示す(前方の 約半数のBGO結晶のみ使用)。これは約10分間の測定デ ータであるが、π⁰中間子のみならずη中間子もはっきり と見えており、BGOegg検出器が予期した性能を十分発揮 していることを確認することできた。2014年度前期から はフルセットアップでの炭素標的、ポリエチレン標的での η'核探索実験を行う。BGOegg検出器内側に挿入する液 体水素標的の準備も進めており、2014年秋から実験に使 用すること目指している。また、並行して大立体角荷電粒 子スペクトロメータ系の検出器製作も進め、今後、2つの 測定器で包括的にハドロン物理実験を推進していく予定で ある。

> 大阪大学 核物理研究センター 與曽井 優

図3 大立体角高分解能電磁カロリメータ BGOeggの模式図(左)と検出された2つのガンマ線のエネルギーから算出された不変 質量分布(右)。