BL09XU 核共鳴散乱

1. はじめに

核共鳴散乱ビームラインBL09XUは周期長32 mmの SPring-8標準アンジュレータを有する硬X線ビームライ ンである^[1]。ビームラインモノクロメータには水冷シリ コン結晶、水冷ダイアモンド結晶を経て、2005年度から は液体窒素冷却シリコン結晶が利用されている。利用研 究は核共鳴散乱を利用する研究と2014年度から始まっ た硬X線光電子分光 (HAXPES) を利用する研究に大別 される。以下では2014年度に行った整備・高度化につ いて、ビームライン全般に関するもの、核共鳴散乱に関 するもの、HAXPESに関するものにそれぞれ分けて報告 する。

2014年度はHAXPES実験の開始に合わせて2014年1 月から3月までの冬期点検調整期間中に導入されたいく つかの大型装置の立ち上げが光源・光学系部門を中心に 行われた。これらには液体窒素冷却ビームラインモノク ロメータの低振動化・安定化、高精度TCスリットの導入、 DSS2の真空化などが挙げられる。高精度TCスリットお よびDSS2の真空化については2013年度の年報で取り上 げているので、ここでは液体窒素冷却ビームラインモノ クロメータについて報告する。

液体窒素冷却ビームラインモノクロメータの低振動 化・安定化

液体窒素用低振動配管および精密温調ユニットによる ステージ温度安定化が施された液体窒素冷却ビームライ ンモノクロメータの立ち上げが2014年4月に順調に行わ

図1 低振動化・安定化された液体窒素冷却ビームラインモノク ロメータ

れた。その後、結晶上での左右のビーム位置を確認した後、 2014年夏期点検調整期間中に散乱線シールドが設置され た。これらの改良によりX線エネルギー等の条件を変更 した際に、モノクロメータが安定するまでの時間が格段 に短縮された。

I. 核共鳴散乱

核共鳴散乱では、主に核共鳴非弾性散乱を利用しての 物質のダイナミクスの研究やメスバウアー分光が行われ ている。放射光を用いたメスバウアー分光は特に極端条 件下や回折条件下、メスバウアー線源に適当な核種がな い場合などに威力を発揮している。

2014年度は、核共鳴散乱用クライオスタットに既存の 熱電対に加え、シリコンダイオードの温度センサーを装 着し、複数の箇所での温度測定を可能にした。さらに希 薄なタンパク質試料に対するメスバウアー分光が行える ようにクライオスタット環境を整備した。

図2 厚さ20 cmまでの試料のメスバウアー分光測定ができる クライオスタット

図3 BL09XUの実験ハッチ2に構築したK-B集光ミラー機構

タンパク質試料冷却用クライオスタット

通常、メスバウアー分光で測定される試料の厚みは数 ミクロンから数mm程度である。しかしながら、希薄な タンパク質試料をNiなどの高い共鳴エネルギーの核種を 利用してメスバウアー分光を行う場合、最適な厚さが数 cmを越える場合がある。そこで図2に示すように、厚さ 20 cmまでの試料が測定できるクライオスタットを設計・ 製作した。試料ホルダーはラディエーション・シールド に囲まれており、試料ホルダー位置で6 Kまでの冷却が 可能である。ビームサイズを考慮すると試料径は2 mm 程度で十分であり、全立体角に放出される放射性線源で は実施困難な、放射光独自の測定が可能となっている。

参考文献

[1] Y. Yoda et al.: Nucl. Instrum. Methods A, 467-468 (2001) 715.

利用研究促進部門 構造物性 II グループ 依田 芳卓

Ⅱ. 硬X線光電子分光

BL09XUの硬X線光電子分光 (Hard X-ray Photoemission Spectroscopy: HAXPES) は、2013年度の高度化研究 開発計画である「埋込まれた磁性積層におけるスピン偏 極電子状態計測法の開発」に基づき、光学機構の整備が 行われ、2014年度後期からHAXPES利用研究に供され ている。本高度化は円偏光X線を用いた磁性実デバイス 材料研究への適応やスピン分解硬X線光電子分光 (Spin-HAXPES)を用いて埋込まれた磁性積層のスピン偏極電 子状態を非破壊で観測するために、高い光強度と密度を 望めるK-B(Kirkpatrick-Baez) 集光ミラー機構を新た にBL09XUに構築し、高エネルギー分解能および高いス ピン電子検出効率を達成することを目的として実施され た。また本高度化により、これまで半導体等の非磁性材 料を中心に行われてきたHAXPESの利用研究が、円偏光 X線を用いた磁性材料への適応やスピン電子検出器によ るスピン偏極度を直接的に観測する共用利用研究に展開 されている^[2-5]。本稿では、2014年度に実施したK-B集 光ミラーの整備状況を報告する。

本光学整備においては、有限なミラー長による反射 率のロスを抑え、いかに高強度・高密度な集光ビーム を試料上に形成できるかが最重要な点である。一般に HAXPESで検出効率が最も高い入射X線と試料の配置は、 斜入射励起配置である。これは光偏向ベクトルと光電子 放出の角度依存性に起因するもので、斜入射励起により 試料上で footprint が伸び、分析視野(アナライザースリ ットロ径およびレンズ拡大率に依存)から外れやすくな る。これが光電子捕集のロスとなる最大の要因である。 BL09XUの実験ハッチ2に構築したK-B集光ミラー機構 を図3に示す。本K-B集光ミラー機構は、光源点をアン ジュレータ中心位置として見込む縮小光学系であり、ミ ラー長がVerticalで300 mm、Horizontalで520 mmと それぞれ長い楕円形状ミラーを採用した点に特徴がある。 これにより、上述したミラー長の制限による取りこぼし 無く高い光強度を望める。加えて楕円ミラー形状につい ては最近のミラー製作技術の進歩によりトロイダルミラ ーよりも収差が少なく製作可能であり、広範囲のエネル ギー領域(6-10 keV)をカバーできる。反射材にはRh を選択し、PtやAu反射材にみられる3つのL吸収端(10-15 keV)を回避している。また特に6 keV での空気パス による光強度減衰を考慮し、高真空対応ミラー調整機構

図4 光電子検出強度の比較 AuのFermi端近傍スペクトル(赤: BL09XU、青:BL47XU)

を内部に設け、高真空下で運用している。以下に2014 年度に達成した各光学条件を記す。

- Beam size : 12.4 (H) \times 4.6 (V) μ m² (FWHM)
- Photon flux : 9.5×10^{11} photons/s @8 keV
- Photon energy region : 6-10 keV
- \cdot K-B Mirror working distance (WD) : 1 m

図4に光電子検出強度をBL47XUと比較したAuの Fermi端近傍スペクトルを示す。試料やアナライザーの レンズ拡大率等はすべて同じ条件下で計測しているため、 検出強度を単純比較することができる。結果はBL47XU と比較して、30倍程度の光電子検出増大を達成した。こ れは光強度3.4倍程度の向上とVertical集光サイズが 1/10に縮小できているためである(ここでHorizontal集 光サイズは、BL47XUの32.8 µmでも分析視野に制限さ れないため、Horizontal集光サイズの差異は検出効率に 依存しない)。図5にアナライザースリット口径およびパ スエネルギーに依存したエネルギー分解能を常温Auの Fermi端近傍スペクトルから評価した結果を示す。とく に励起エネルギー6 keVでの計測では、光電子検出効率 を大きく減じることなく、100 meV程度と非常に高いエ ネルギー分解能の達成を確認した。これまでは光電子検 出を著しく減じてしまうため、250 meV程度のエネルギ ー分解能下での計測であったが、試料常温下で100 meV のエネルギー分解能下での計測が可能となったメリット は極めて大きく、検出効率が4桁程度減少するチャレン ジングなスピン電子検出器開発への適応ばかりでなく、 高いエネルギー精度が望まれる埋め込まれた界面におけ るバンドマッピング計測等への展開が期待できる。

参考文献

- [2] M. Suzuki, et al.: Jpn. J. Appl. Phys. 37, (1998) L1488.
- [3] S. Ouardi, et al.: *Phys. Rev. Lett.* **107**, (2011) 036402.
- [4] G. Stryganyuk, et. al.: Jpn. J. Appl. Phys. 51, (2012) 016602.
- [5] E. Ikenaga, et al.: J. Electron Spectrosc. and Relat. Phenom. 190, (2013) 180-187.

利用研究促進部門 応用分光物性グループ 池永 英司

図5 アナライザースリット口径およびパスエネルギーに依存したエネルギー 分解能を評価したAuのFermi端近傍スペクトル