BL13XU 表面・界面構造解析ビームライン

1. 概要

物質の表面や界面では、対称性の破れからバルクとは 異なる特徴的な原子配列をとり、それに起因して多様 な物性があらわれる。表面・界面構造解析ビームライン BL13XUでは、X線の回折・散乱現象を利用して金属、 半導体結晶の表面構造のその場観察のほか、酸化物結晶、 有機結晶、触媒の表面層や、その上に成長した薄膜・ナ ノ物質構造が調べられている。デバイス材料の局所歪み の評価や、静的な構造解析にとどまらない外場印加時の 表面や界面の動的構造変化のその場観察、表面における 位相問題への取り組みなど、多岐にわたるX線回折・散 乱実験が行われている。

第1実験ハッチでは、高精度X線回折装置を用いた薄膜、 固体液体界面、ナノ物質の解析実験、第3実験ハッチでは、 超高真空表面X線回折装置による固体表面のその場観察 実験、新増設の第4実験ハッチでは、高分解能マイクロ 回折装置によるデバイス材等の局所構造解析実験が主に 行われている。第2実験ハッチは、ユーザー持ち込み装 置用の実験ハッチである。標準アンジュレータ・光学系 に加え、非対称分光結晶と屈折レンズ集光系からなる大 強度光学系も利用できる。以下に2014年度に行われた 技術開発・高度化の詳細について報告する。

2. 表面X線回折の構造精密化解析ソフトウェアの開発

放射光X線回折による表面構造解析を標準ツールとし て利活用し、その利用分野を拡大するには、計測基盤 とともに解析手法の開発・高度化も必須である。特に理 論計算等の物性理解の強力なツールとの連携においては pm分解能をもつX線回折の利点を活かした結晶学的な 構造情報の抽出が欠かせない。そこで、構造精密化の基 盤ツールとして、最小自乗法による構造精密化解析ソフ トウェア(プログラム言語はC++)を開発し、放射光ユ ーザーへの配布を開始した。ユーザーからの意見をフィ ードバックし易く機動性が高いことがソフトウェア開発 を行う利点である。

一例として、CTR (Crystal Truncation Rod) 散乱に よるScAlMgO₄結晶の劈開面の同定に同解析ソフトウェ アを用いた結果を図1に示す。CTR散乱は、表面がある ことで結晶のもつ周期性が失われるために生じる散乱で、 表面界面に敏感なプロファイルをもつ。A面が劈開面で あることが一目瞭然である。同解析ソフトウェアでは、

修正Marquardt法による構造モデルの最適化が可能で、 CTR 散乱および分数次ロッド散乱とよばれる表面再構成 構造に由来するロッド状散乱および面内回折を、運動学 的回折理論に基づいて解析できる。異常分散項を考慮し た全ての元素および異方性温度因子にも対応している。

3. 高分解能マイクロ回折装置の整備

本装置では、半導体・デバイス材料のサブミクロン領 域における格子歪と格子面の傾きを分離し、且つ、高い 空間・角度分解能で測定することができる。2014年度は、 第3実験ハッチの下流に恒温実験ハッチ(第4実験ハッチ) を増設し、第3実験ハッチを超高真空表面X線回折装置 と共有する形で運用していた高分解能マイクロX線回折

図2 増設されたBL13XU第4実験ハッチの写真。

装置に改良を加え第4実験ハッチへ移設した^[1]。本件は、 2014年度高度化研究開発案件「ナノビーム回折・散乱計 測基盤の開発」として、(独)理化学研究所(現在:国立 研究開発法人理化学研究所)の予算で行われた。

増設した第4実験ハッチの写真を図2に示す。ハッチ サイズは幅3 m,長さ4 m,高さ3.3 mで、第3実験ハ ッチとの間に1.3 mの間隔があり、ここにハッチ上部に 上るための階段がある。恒温ハッチは内壁に断熱材を詰 め込んだ断熱構造とし、LED照明によりハッチ内での熱 の発生を抑えている。更に、精密空調を導入することで、 ハッチ内の温度変化を0.1℃/日以下に安定化している。 ハッチ入退室扉近傍に風防カーテンを設置し、人の出入 りに伴う温度変動を抑える工夫も行っている。これらの 結果、ビームサイズが100 nm程度のX線ビームをより 安定的に利用する環境が整った。

移設に伴い本装置に、1)高安定架台、2)装置全体 を平行移動させる自動Xステージ、3)CCD検出器用自 動2 θ回転ステージ、を新規に導入する改造を行った。 同装置の全体写真を図3に示す。1)の高安定架台は電 動の高さ調整機構を備え、2)の自動Xステージは、X線 のエネルギーによって変わるビーム位置に対して装置全 体の位置調整に用いる。従来の手動Xステージと比べ、 X線のエネルギー変更作業が容易になった。3)の自動 2 θ回転ステージは、2 θ回転やカメラ長の変更が試料位 置に影響を与えないよう、試料 θ回転用のステージとは 異なる定盤に設置してある。従来は、2つのステージを 同じ定盤上に設置していたため、2 θ 角やカメラ長を大

図3 BL13XU第4実験ハッチ内の高分解能マイクロX線回折装 置の全体写真。

きく変えると試料位置が数十μm動いていたが、今回の 改造でこの問題は大きく改善された。これによって、2 θ 角を大きく動かすことになる複数の逆格子マップの連続 自動測定が可能となった。

 S. Kimura, Y. Imai and H. Tajiri : SPring-8/SACLA Information, 20 (2015) 246.

> 利用研究促進部門 構造物性 I グループ 田尻 寛男、今井 康彦