BL35XU 高分解能非弾性散乱

概要

BL35XUは、短周期アンジュレータから得られる硬X線 を利用したmeV分解能の高分解能X線非弾性散乱ビーム ラインである。ビームラインでは、これまで周期的配列 を持つ結晶や周期的な配列を持たない液体やガラスなど で観測される素励起を観測することにより物質中の原子 の動きを明らかにし、物質の機能や性質を調べる研究が 進められている。これらの研究に加えて、近年増加傾向 にある地球科学分野の課題に対応するためBL35XUにお けるKBミラーの需要が増している。このため、KBミラ ーの確実かつ迅速な設置が求められている。この現状を 克服し、ビームラインのより円滑な運用を目指すため、 2013年度に引き続きKBミラーの設置やビーム位置・ ビームサイズ評価の迅速化について取り組んだ。また、 2014年度末に更新した液体窒素循環装置の現状について も述べる。 イズを実現するために、2012年度以前は最長数日間を要 していた。その理由の一つは、2013年度の年報にも述べ たスリットを駆動するためのステージのグリースが固着 することによって入射ビーム位置を決定するスリット位 置の再現性が失われることに起因していた^[2]。その他に は、入射ビームの水平位置(試料の水平位置)がKB導 入の有無にかかわらず固定されているというBL35XUに おけるKBミラー運用に関する特殊事情がある。このため、 BL35XUにおいてKBミラーを使用する際には、ビーム の集光度と同時にビーム位置の評価も行うことが必須で ある。これにより、KBミラー設置にかかる時間を短縮で き、集光ビームを用いたユーザー実験において効率的な ビームライン運営が可能となる。

2014年度は迅速なKBミラー設置の習熟度向上とKB 設置時のユーザーによる入射ビーム強度の最大化を簡便

 KBミラー設置およびビーム 位置とビームサイズ評価の迅 速化

BL35XUでは、高エネルギー 分解能光学系の要請からすべて の実験において、ビームライン に常設されたトロイダルミラー により $80 \times 100 \ \mu m^2$ ないしは それ以下のビームサイズのX線 を利用したX線非弾性散乱実験 が行われている。しかしなが ら、近年採択課題数が増加して いる地球科学分野においては試 料を高温高圧下にする必要があ り、圧力発生及びレーザーによ る加熱条件の要請から試料サイ ズが制限されるため、必要とさ れる入射X線のビームサイズは 20×20 um²程度となる。この条 件を達成するためには、KBミラ -の導入が必要不可欠であり、 BL35XUには2007年度に既に導 入されていた^[1]。しかしながら、 ユーザー実験に必要なビームサ

図1 KBミラーで集光したビームサイズ。上段はスリット・スキャンによる計測結果、 下段はAu線を用いたナイフ・エッジ・スキャンによる計測結果。 に行う方法の確立に取り組んだ。その結果、入射ビーム 位置を決定するスリットの再現性が十分にあれば、12時 間程度でKBミラーを用いた集光ビームを確実に試料位 置に導入できるよう新たなビームサイズ計測用治具を整 備した。また、入射ビーム強度の最大化についてもマク ロを用いて簡便に行える方法を確立することができた。

BL35XUでは、従来10 µm厚のアルミ箔を挟んだスリ ットを用いたX線ビームサイズの測定を行ってきた。前 述のビーム水平位置の最適化とビームサイズ測定の簡素 化を行うために、BL39XU(磁性材料ビームライン)で 既に導入されていた上下及び左右方向に張られた金線に よるナイフ・エッジ・スキャンを導入した。BL35XUで 使用するX線エネルギーはSiの背面反射光学系を使用し ているため、ユーザー実験に供しているX線エネルギー は15.816、17.793及び21.747 keVに限られる。さらに、 金のL₁吸収端が14.35 keVであるため、金線の利用はナ イフ・エッジ・スキャンに使用する材料として大変効果 的である。このため、結果的に断面形状にあまり依存す ることなくビームサイズの計測に使用できることがわか った。図1に従来のスリット・スキャンと今回採用した ナイフ・エッジ・スキャンによる同一条件でのビームサ イズの計測結果を示す。水平方向では両者で大きな差異 が無かったが、鉛直方向では計測結果に差が生じた。従 来行っていたスリット・スキャンにおいては水平方向を 測るスリットの配置において回転自由度により見かけの スリット幅に任意性があるのに対し、鉛直方向ではスリ ット幅に直接かかわる自由度が無いと考えると、得られ た差異をピーク位置の強度差を含めて説明できる。また、 金線は上下及び左右方向に張られているため、回折計の 回転中心と集光したビーム位置の相対関係をビームサイ ズの計測と同時に行うことができる。このことで、水平

方向と鉛直方向のビームサイズとビーム位置の調整を効 率的に行えるようになった。

2. 2結晶分光器の入替と液体窒素循環装置の更新

BL35XUで行われている高分解能X線非弾性散乱では、 高輝度の入射X線とその輝度の安定性が実験遂行上必要 不可欠である。この2つの条件を更新するために、光源 光学系部門の協力の下で2結晶分光器及び分光結晶冷却 用の液体窒素循環装置の更新を行った。ここでは、この うち液体窒素循環装置の更新について述べる。従来の液 体窒素循環装置は図2(a) に示すように、BL35XUでの 実験に必要とされる大強度の入射X線に耐えるために、2 連の冷凍機にもう1基冷凍機を増設したタイプのものを 使用していた。今回の更新で図2(b) に示す4連の冷凍 機を有する循環装置に更新された。この更新によりユー ザー実験で使用する各実験条件で30%ほど試料位置での 入射ビーム強度の向上が見られた。さらに、今回の更新 によって高熱負荷条件が大幅に緩和され、ビームダンプ 後等からの復帰の際に、ユーザーの不注意によって生じ た高熱負荷条件で液体窒素循環装置の緊急停止がほぼ解 消されることが見込まれる。

参考文献

- [1] Alfred Baron、他: 2007年度SPring-8年報、P.88.
- [2] Alfred Baron、他: 2013年度SPring-8年報、P.71.

利用研究促進部門 構造物性 II グループ 非弾性散乱チーム 筒井 智嗣、内山 裕士、石川 大介

図2 (a) これまで使用した液体窒素循環装置 (b) 2014年度に新たに導入された液体窒素循環装置

(b)

