BL09XU 核共鳴散乱

はじめに

核共鳴散乱ビームラインBL09XUは周期長32 mmの SPring-8標準アンジュレータを有する硬X線ビームライ ンである^[1]。ビームラインモノクロメータには液体窒素 冷却シリコン結晶が使用されている。ビームラインでは 核共鳴散乱と硬X線光電子分光を利用する研究が行われ ている。以下では2015年度にそれぞれの実験手法で行 った整備・高度化について報告する。

I. 核共鳴散乱

核共鳴散乱では、放射光を励起光としたメスバウアー 効果測定が行われており、原子ダイナミクスのための非 弾性散乱や電子や原子核の状態を観測する前方散乱や放 射光メスバウアー分光が行われている。後者においては、 放射線源を用いた実験が困難な高圧下実験や共鳴回折実 験に加え、適当な親核を持たない核種の実験に利用され ている。

2015年度の整備・高度化として⁵⁷Fe用0.8 meV高分 解能モノクロメータの分解能関数の精密測定、ヘリウム 循環型パルスチューブ冷凍機の導入、フォノン状態密度 を導出するソフトウェアの導入などを行った。

⁵⁷Fe用0.8 meV高分解能モノクロメータの分解能関数の 精密測定

これまで主として多数の振動モードが観測されるタン パク質試料の非弾性散乱実験に主として利用されてきた ⁵⁷Fe用0.8 meV高分解能モノクロメータは、周期構造

図1 ⁵⁷Fe用0.8 meV高分解能モノクロメータの分解能関数、
赤丸:測定データ、青線:フィッティング曲線

を持たない不規則系と言われるガラスなどの原子ダイナ ミクスにも利用が始められている。⁵⁷Fe用高分解能モノ クロメータには、0.8 meV分解能のほかに2.5 meVと 3.5 meV分解能があるが、前者は後者に比べて分解能関 数として半値幅は狭いが裾が長いという特徴を持つ。図 1のように裾の長い分解能関数による信号観測やスペク トル解析への影響をユーザーに提供できるデータを取得 することができた。

ヘリウム循環型パルスチューブ冷凍機の導入

これまでBL09XUでは試料等の冷却にヘリウムフロー 型の冷凍機を用いてきたが、液体ヘリウムの高騰及び低 温環境の安定的な供用を目的として図2に示すパルスチ ューブ型冷凍機を導入した。前方散乱実験に利用する場 合には、従来の冷凍機同様に3個の試料を装着すること が可能で、ラディエーション・シールドを用いて試料ホ ルダー取り付け位置で最低到達温度が3 Kであることを

図2 核共鳴前方散乱用試料ホルダーを備えるパルスチューブ型 冷凍機

大型放射光施設の現状と高度化

確認している。今後、冷凍機の振動による測定への影響 を調べ、液体ヘリウムを使用しない非弾性散乱やエネル ギー分散型放射光メスバウアー分光の利用実験環境を早 期に整備する予定である。

フォノン状態密度を導出するソフトウェアの導入

核共鳴非弾性散乱の実験中に得られたスペクトルから フォノン状態密度を導出する解析ソフトウェアをU. C. Davis (カリフォルニア大学デービス校)のCramer教授の グループの協力を得てBL09XUに導入した。この解析ソ フトウェアはフリーソフトウェアであるPHOENNIX^[2] をWeb上で簡易利用できるようにしたものである。また、 広範なユーザー利用に供するため、⁵⁷Fe以外の核種にも 対応している。

参考文献

- [1] Y. Yoda et al.: Nucl. Instrum. Methods A, 467-468 (2001) 715.
- [2] W. Sturhahn, *Hyperfine Interact*, **125** (2000) 149.

利用研究促進部門 構造物性 II グループ 依田 芳卓・筒井 智嗣

Ⅱ. 硬X線光電子分光

BL09XUの硬X線光電子分光(Hard X-ray Photoemission Spectroscopy: HAXPES)は、K-B集光 ミラー機構構築を中心とした光学整備が行われ、2014年 度後期からHAXPES利用研究に供されている。BL47XU と比較して、30倍程度の光電子検出増大と試料常温下で 100 meV程度と非常に高いエネルギー分解能を達成して いる^[3]。加えて研究代表者Claudia Felser教授(Max Planck Institute)の長期課題計画に沿って、埋もれた界 面におけるスピン偏極度を直接観測する検出器開発が行 われた。これまでに多層膜のFe2p_{3/2}内殻スピン電子状 態計測に成功しているが、電子状態密度が小さいフェル ミ(E_f)近傍のスピン分解観測には至っていない^[4]。本 稿では、高い電子検出効率を望めるBL09XUで実施した スピン検出器開発及びE_f近傍のスピン分解計測について 報告する。

本スピン検出器は、スピン軌道相互作用の大きなW 単結晶(重元素)を用い、その2次電子がスピン偏極し ていることを利用してスピン分解する(図3参照)。ス ピン分解測定ではFigure of Merit (FoM)で示した検 出効率が4桁程度減少する。加えて硬X線領域の光電 子励起断面積は軟X線領域に比べ2桁程度減少するた め、スピン電子検出効率が極端に悪く、チャレンジン

図3 スピン電子検出器の概念図、断面図およびW結晶から放出される方位(0,2)シリーズをチャンネルトロンで検出する機構図

図4 Co₂Mn_{1.24}Fe_{0.16}Si_{0.84}(CMFS) 磁性層のフェルミ近傍のスピン分解計測スペクトル。 (a)M⁺, (b) M⁻の各試料方向に対する Upper および Lower channeltrons の積算スペクトル。(c) スピン偏極度を算出したスペク トル(赤:raw、黒:smooth 結果)。(d) スピン偏極度スペクトル(黒:smooth 結果、青:第一原理計算結果)

グな検出器開発と言える。また経時によりW結晶表面 が汚染劣化するため、酸素雰囲気中 600° C程度でフラ ッシュアニールすることで、清浄表面を回復させる。 Co₂Mn_{1.24}Fe_{0.16}Si_{0.84}(CMFS)磁性多層膜におけるE_f近 傍のスピン分解計測スペクトルを図4に示す。総じてS/ Nは低いものの、第一原理計算で求めた特徴的な構造 (E-E_f: -2.0 eV近傍)に一致を示しており、E_f近傍スピ ン偏極度に関して議論している^[5]。さらなる高検出効率 化が求められるが、今後、直接スピン偏極を解明する実 験手法として、ホイスラー合金界面での磁性多層膜研究 やTMR素子を用いた実磁性デバイス材料開発の強力なツ ールになると期待される。

参考文献

- [3] 池永英司: 2014年度 SPring-8·SACLA年報(2015) 48-49.
- [4] G. Stryganyuk, et. al.: Jpn. J. Appl. Phys. 51, (2012) 016602.
- [5] X. Kozina, E. Ikenaga, et. al.: J. Electron Spectrosc. and Relat. Phenom. 211, (2016) 12-18.

利用研究促進部門 応用分光物性グループ 池永 英司