BL38B1 構造生物学Ⅲ

偏向電磁石を光源とするBL38B1では、安定性の高い ビームを利用した効率的かつ高精度なタンパク質結晶回 折データ測定環境を中心に、試料の化学状態をモニター するオンライン顕微分光装置や生理条件での構造解析を 可能にする室温測定環境など、多様な実験環境の提供と 開発を行っている。

ユーザー実験の利便性や効率性を高めるため、2003年 以来ユーザーフレンドリーなデータ測定ソフトウェア BSS^[1]、新型CCD検出器、大面積IP検出器の導入によ りシステム構築を進めてきた。2005~2010年には自動 サンプルチェンジャー SPACE^[2]の導入とマグネットピ ン対応の高度化を行うとともに、自動運転のための試料 情報、測定条件、回折データなどの管理を行う環境を整 え、メールイン測定システムを導入、さらにこれを発展 させた遠隔実験システムの共用利用を開始した。2011 ~2014年には、高精度データ収集のための高度化とし て、集光系の改善による高集光化、高感度型CCD検出器、 ビームサイズ可変機構、回折計/検出器分離型定盤の導 入を行った。さらに、微小結晶の回折測定を効率化する Fine needleキャピラリーマウント法とこれを応用した 希ガス誘導体結晶作成法の開発、ならびに試料雰囲気の 湿度調整と結晶の水溶性ポリマーコーティングを用いた 室温および凍結条件での試料マウント手法(HAG法^[3]) の開発を行った。

2015年度は、より高精度、高効率な実験を可能とする ため、高精度ゴニオメータ、同期制御システムを導入し、 高速なCMOS検出器による測定系を構築した。さらに、 測定時間短縮を目的とした、分光器内結晶の非対称配置 による高輝度化に取り組んだ。また、X線トポグラフィ ー実験環境の構築、解析環境の整備を行った。HAG法に ついては、2014年度に引き続き開発を行った。

1. より高精度、高効率な実験を可能とするための高度化

BL38B1ではHAG法を用いた室温でのデータ収集が 可能であるが、その際の試料の放射線損傷は100 Kの クライオ温度とは異なり、無視できない状況にある。こ の問題を軽減するため測定系の高速化を進めた。従来 のCCD検出器による測定系では、読み取り時間として 1枚当たり3秒、さらにシャッターとゴニオの同期のた めに1枚当たり1秒の露光時間が必要なため、180枚分 の回折データ収集に15分程度の時間が必要であった。

図1 高精度高速回転ゴニオメータとCMOS検出器によるシャッ ターレス測定

そこで、高精度高速回転が可能なゴニオメータに加え、 ゴニオメータ4軸とX線シャッター、検出器の同期制御 が可能な同期制御システムBlanc8(制御・情報部門で 開発)を導入、さらに3 Hzで測定が可能な浜松ホトニ クス社製CMOS検出器を組み合わせることで、結晶を 移動させながらシャッターレスでの連続測定を実現し、 データ収集時間は数分以内となった(図1)。さらに、 6 Hzでの連続読み出しが可能な新型のCMOS検出器の 利用と、取得画像データをストレージへ書き込むための コンピュータネットワークを1 Gbps回線から10 Gbps 回線へ高速化することで、データ収集が30秒~1分程 度で完了できるようになった。現在は試料と検出器間の 距離を150 mm付近で固定しているため、最大分解能は 2.7 Åまで測定できる。今後、この距離を変更する機構 を導入し、より高分解能のデータ収集を可能にする計画 である。

2. 非対称配置結晶を用いた高輝度化

これまでに、ミラーによるX線集光の最適化、回折計 上機器の真空化などにより高輝度化を進めてきた。し かし、結晶サイズのさらなる微小化に対応するため、 光源・光学系部門光学系グループの協力のもと、分光器 内結晶の非対称配置化(図2)による高輝度化を検討した。 評価実験の結果、結晶の歪みに由来すると考えられる縦 方向のビーム発散が確認された。今後、この問題を解決 するための高度化を進めていく予定である。

図2 二結晶分光器に設置する非対称配置結晶

3. X線トポグラフィー測定システムの構築

X線結晶構造解析では、できるだけ高分解能なデータ を取得し、より微細な構造を解析することが求められる。 そこで我々は、タンパク質結晶内部の転移、積層欠陥、 成長縞、不純物の混入などによる回折への影響を確認す るために、X線トポグラフィー法(XRT)の測定系の構 築と測定手法の開発を行った。まず、通常使用するCCD 検出器を下流に退避させ、リング・ホール方向、上下方 向にシフト可能なステージを設置した。このステージ上 にXRT測定用の小型高分解能CMOS検出器を新たに設 置するとともに、ソフトウェアの開発を行った。これで 先述のCMOS検出器による回折の確認と新しい高分解能 検出器による狙った回折点の内部構造の測定を、半自動 で行える実験系が構築できた(図3)。今後は、これを用 いたXRT測定手法の開発を進める。

4. HAG法の高度化

先述したHAG法が適用可能な温度は、これまでハッ チ内の室温に固定されていた。より低温で結晶化された 試料のなかには室温では不安定なものも多くあり、これ らにも適応できるように、低温対応の調湿装置および

図3 X線トポグラフィー実験系

図4 低温対応調湿装置を試料位置に設置した様子

結晶ハンドリング用の温度制御ワークベンチの開発を 2014年度に引き続き行った。

・低温対応調湿装置の開発

大型のサーキュレータと熱交換器、新設計の湿潤ガス 吹き付けノズルの導入によって、4℃から20℃まで温度 制御が可能となった。X線照射を行う試料位置への温 湿度気流吹き付け機構を図4に示す。湿度制御のPIDパ ラメータの調整、熱交換効率の改善などをさらに行い、 2016年度のユーザー利用に向けた準備を今後も進めて いく。

・温度制御ワークベンチの開発

2℃から20℃まで制御可能なワークベンチを製作し、 動作確認を実施した(図5)。その過程で、結晶観察用の CCDカメラとLCDの解像度が粗く、結晶のハンドリン グ時の視認性に問題があることが判明した。この課題は 今後解消したい。

図5 温度制御ワークベンチ

参考文献

- [1] G. Ueno, et al.: J. Synchrotron Rad. **12** (2005) 380-384.
- [2] H. Murakami, et al.: J. Appl. Cryst. 45 (2012) 234-238
- [3] S. Baba, et al.: Acta Cryst. **D69** (2013) 1839-1849.

タンパク質結晶解析推進室

馬場 清喜、水野 伸宏、仲村 勇樹 長谷川 和也、奥村 英夫、村上 博則 Nipawan Nuemket、尾崎 愛美、津田 奈美 熊坂 崇、八木 直人

利用研究促進部門

技術支援グループ

福居 知樹、入江 崇起、早賀 紀久男